
Go ahead and open both:

1. PollEv.com/compunc
2. Terminal - start a session, cd into lecture - pull today's materials with git pull origin master

Outline

• Build Systems, make, and Makefiles

2

Build Systems

• Machine code program files are complex digital artifacts to produce
• Many tools are required to compile high level programs into machine code

• Tools in a compilation process may include:
• linters to check and fix deviations from a style guide

• running of test harnesses to verify lack of regressions

• compilation of source code to an intermediate representation

• compilation of intermediate representations to machine code

• Carrying out each step manually is tedious and error prone.

• During development only small parts of a program change.
• Why repeat the whole process from scratch when most steps have same results?

Enter: make and Makefiles (1976 - Bell Labs)
"Make originated with a visit from Steve Johnson (author of yacc, etc.), storming into
my office, cursing the Fates that had caused him to waste a morning debugging a
correct program (bug had been fixed, file hadn't been compiled, cc *.o was therefore
unaffected).

As I had spent a part of the previous evening coping with the same disaster on a
project I was working on, the idea of a tool to solve it came up. It began with an
elaborate idea of a dependency analyzer, boiled down to something much simpler,
and turned into Make that weekend.

Use of tools that were still wet was part of the culture. Makefiles were text files, not
magically encoded binaries, because that was the Unix ethos: printable, debuggable,
understandable stuff."

— Stuart Feldman

Representing a Build Process

main.c

Guards.c

main.o

Guards.o

lec14

gcc -Wall -Wextra -std=c11 -g -c main.c

gcc -Wall -Wextra -std=c11 -g -c Guards.c

gcc main.o Guards.o -o lec14

• A Makefile describes the structure of a build process
• The nodes of the graph are files and the edges are build steps

• If a node/target is determined to be missing, make backtracks to the missing
prerequisites and execute the commands of each edge in order. Additionally, if a file that
produces another file is newer than the file it produces, make will automatically rebuild
it.

• This is another example application directed acyclic graphs, partial ordering, and
topological sort!

Makefile - Rule Syntax
<target-file>: <prerequisite-file>*
[tab-character]<recipe-to-produce-target-from-prereqs>*

Example Rules:
lec14: main.o Guards.o

gcc main.o Guards.o -o lec14

Guards.o: Guards.c
gcc -Wall -Wextra -std=c11 -g -c Guards.c

main.o: main.c
gcc -Wall -Wextra -std=c11 -g -c main.c

The make Build System's Big Idea
• In a Makefile, you specify each step's:

1. Prerequisite Source files

2. Recipe of Shell Command(s) that use prerequisite files to produce target file

3. The Target file produced by the recipe

• make reads the Makefile and then figures out which target files are missing or outdated and
run only the commands needed to build exactly those targets.
• Early steps in a build will run a commands taking source files to produce target files.

• Later rules use earlier target files as source files to produce additional target files.

• make was designed for C projects but has many other applications
• This is evidence of a good abstraction. Does it generalize beyond intent?

Makefile Variables
• It is good practice to define variables at the top of your Makefile

• Definition Syntax:
• The value is a string that terminates at the end of the line
• The variable name does not need to be all caps, but they often are

• Common variables:
• CC is the name of the C compiler to compile with

• CC_FLAGS are the compiler options

• Usage Syntax:

• The above example expands to:

8

Hands-on

• In today's Makefile, change the topmost rule for lec14 from:

• To:

• Save and try running make. Check-in when project is building.

9

lec14: main.o Guards.o Point.o Path.o
gcc -Wall -Wextra -std=c11 -g main.o Guards.o Point.o Path.o -o lec14

-lm

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${OBJ_FILES} -o ${TARGET}

${LINK_MATH}

Automatic Variables

• Recipes can use automatic variables to reference target or prerequisite file(s)

• Automatic variables are available:

- The target of the rule

- The names of all prerequisite files

- The names of the first prerequisite file

- The names of all prerequisite files that are newer than the target

• More automatic variables exist, too. See the full documentation:
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

Hands-on

• Change the rule we just changed to use automatic variables:

• To:

• Save and try running make clean followed by make again. Check-in when
project is building.

11

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${^} -o ${@} ${LINK_MATH}

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${OBJ_FILES} -o ${TARGET}

${LINK_MATH}

Running make with specific goals
• The Default Goal of a Makefile is its first target

• You can change the goal of make by naming a specific target instead

• For example:
$ make main.o # sets goal to target main.o

$ make Guards.o # sets goal to target Guards.o

• This is useful in two cases:
1. When your build process is slow, and you want to focus on a sub-target

2. When you want to run recipes with phony targets (next slide!)

Phony Rules

• Some recipes of a Makefile intentionally do not produce their target...
• ...they're phony!

• Common task: clean up (delete) files generated by the build process.

• Phony rules are used to automate common tasks in development that are outside of
the compilation process. Other examples besides clean:
• test - run unit / functional test suites
• run - build and run program
• debug - build program and run gdb

Hands-on - A Phony run Rule

• After the clean rule, add the following:

• Try: make run, make clean, make run.

• Check-in when project is building.

14

Removing Repetitive Rules with Patterns (1 / 2)

• Notice the common structure to the
rules right...

• When many rules take on a pattern
where the target name is based on
the prerequisite name you can use a
pattern rule.

15

main.o: main.c
${CC} ${CC_FLAGS} -c main.c

Point.o: Point.c
${CC} ${CC_FLAGS} -c Point.c

Path.o: Path.c
${CC} ${CC_FLAGS} -c Path.c

Guards.o: Guards.c
${CC} ${CC_FLAGS} -c Guards.c

Pattern Rules (2 / 2)
• A Pattern Rule is one where the target contains a single % symbol

• If another rule's prerequisite(s) match a target pattern, then implicit rules are produced:
• The matched part of the % in the target is also substituted in its prerequisites.
• For example, with the rule above, since the top-level rule has Guards.o as a prerequisite, make generates an implicit

rule of:
Guards.o: Guards.c

${CC} ${CC_FLAGS} -c ${^}

• Automatic variables allow implicit recipes to use target ${@} and prerequisite ${^} values.

• Warning: A common misconception is that these rules are produced by make searching for matching
prerequisite files. This is not the case. For a pattern rule to produce implicit rules some other rule's
prerequisites must reference the pattern's target.

• Full Documentation:
https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html

https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html

Hands-on - A Pattern Rule

• Remove the repetitive rules and replace them with a pattern rule:

• Try: make clean, make run.

• Check-in when project is building.

17

make is goes far deeper than this tutorial

• As a 40-year old tool it has accumulated many capabilities

• Many features try to avoid redundancy and verbosity of the Makefile
• The downside is this leads to cryptic, non-obvious Makefiles

• Special features to use make for building specific kinds of projects
• i.e. C projects or archives

• Modern build systems like CMake will generate a Makefile specific to the system the
project is being built on.
• Eases portability between operating systems and versions.

• The documentation for make is generally very good:
• https://www.gnu.org/software/make/manual/make.html

https://www.gnu.org/software/make/manual/make.html

Many build tools are make-inspired

• Nothing stops you from using make for any project, but many ecosystems revolve
around tooling custom suited for their environment.

• C/C++ – make, Cmake, bazel

• Rust – cargo

• Java – Ant, Maven, Gradle, bazel

• Node.js / JavaScript / TypeScript – npm, webpack, gulp, grunt

• Python – Scons, Waf

Go ahead and open both:

1. PollEv.com/compunc
2. Terminal - start a session, cd into lecture - pull today's materials with git pull origin master

Outline

• Build Systems, make, and Makefiles

• Recursive Structs

• Ownership in Memory Management

• Recursive to Iterative with Cursor Pointers

21

Build Systems

• Machine code program files are complex digital artifacts to produce
• Many tools are required to compile high level programs into machine code

• Tools in a compilation process may include:
• linters to check and fix deviations from a style guide

• running of test harnesses to verify lack of regressions

• compilation of source code to an intermediate representation

• compilation of intermediate representations to machine code

• Carrying out each step manually is tedious and error prone.

• During development only small parts of a program change.
• Why repeat the whole process from scratch when most steps have same results?

Enter: make and Makefiles (1976 - Bell Labs)
"Make originated with a visit from Steve Johnson (author of yacc, etc.), storming into
my office, cursing the Fates that had caused him to waste a morning debugging a
correct program (bug had been fixed, file hadn't been compiled, cc *.o was therefore
unaffected).

As I had spent a part of the previous evening coping with the same disaster on a
project I was working on, the idea of a tool to solve it came up. It began with an
elaborate idea of a dependency analyzer, boiled down to something much simpler,
and turned into Make that weekend.

Use of tools that were still wet was part of the culture. Makefiles were text files, not
magically encoded binaries, because that was the Unix ethos: printable, debuggable,
understandable stuff."

— Stuart Feldman

Representing a Build Process

main.c

Guards.c

main.o

Guards.o

lec14

gcc -Wall -Wextra -std=c11 -g -c main.c

gcc -Wall -Wextra -std=c11 -g -c Guards.c

gcc main.o Guards.o -o lec14

• A Makefile describes the structure of a build process
• The nodes of the graph are files and the edges are build steps

• If a node/target is determined to be missing, make backtracks to the missing
prerequisites and execute the commands of each edge in order. Additionally, if a file that
produces another file is newer than the file it produces, make will automatically rebuild
it.

• This is another example application directed acyclic graphs, partial ordering, and
topological sort!

Makefile - Rule Syntax
<target-file>: <prerequisite-file>*
[tab-character]<recipe-to-produce-target-from-prereqs>*

Example Rules:
lec14: main.o Guards.o

gcc main.o Guards.o -o lec14

Guards.o: Guards.c
gcc -Wall -Wextra -std=c11 -g -c Guards.c

main.o: main.c
gcc -Wall -Wextra -std=c11 -g -c main.c

The make Build System's Big Idea
• In a Makefile, you specify each step's:

1. Prerequisite Source files

2. Recipe of Shell Command(s) that use prerequisite files to produce target file

3. The Target file produced by the recipe

• make reads the Makefile and then figures out which target files are missing or outdated and
run only the commands needed to build exactly those targets.
• Early steps in a build will run a commands taking source files to produce target files.

• Later rules use earlier target files as source files to produce additional target files.

• make was designed for C projects but has many other applications
• This is evidence of a good abstraction. Does it generalize beyond intent?

Makefile Variables
• It is good practice to define variables at the top of your Makefile

• Definition Syntax:
• The value is a string that terminates at the end of the line
• The variable name does not need to be all caps, but they often are

• Common variables:
• CC is the name of the C compiler to compile with

• CC_FLAGS are the compiler options

• Usage Syntax:

• The above example expands to:

27

Hands-on

• In today's Makefile, change the topmost rule for lec14 from:

• To:

• Save and try running make. Check-in when project is building.

28

lec14: main.o Guards.o Point.o Path.o
gcc -Wall -Wextra -std=c11 -g main.o Guards.o Point.o Path.o -o lec14

-lm

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${OBJ_FILES} -o ${TARGET}

${LINK_MATH}

Automatic Variables

• Recipes can use automatic variables to reference target or prerequisite file(s)

• Automatic variables are available:

- The target of the rule

- The names of all prerequisite files

- The names of the first prerequisite file

- The names of all prerequisite files that are newer than the target

• More automatic variables exist, too. See the full documentation:
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables

Hands-on

• Change the rule we just changed to use automatic variables:

• To:

• Save and try running make clean followed by make again. Check-in when
project is building.

30

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${^} -o ${@} ${LINK_MATH}

${TARGET}: ${OBJ_FILES}
${CC} ${CC_FLAGS} ${OBJ_FILES} -o ${TARGET}

${LINK_MATH}

Running make with specific goals
• The Default Goal of a Makefile is its first target

• You can change the goal of make by naming a specific target instead

• For example:
$ make main.o # sets goal to target main.o

$ make Guards.o # sets goal to target Guards.o

• This is useful in two cases:
1. When your build process is slow, and you want to focus on a sub-target

2. When you want to run recipes with phony targets (next slide!)

Phony Rules

• Some recipes of a Makefile intentionally do not produce their target...
• ...they're phony!

• Common task: clean up (delete) files generated by the build process.

• Phony rules are used to automate common tasks in development that are outside of
the compilation process. Other examples besides clean:
• test - run unit / functional test suites
• run - build and run program
• debug - build program and run gdb

Hands-on - A Phony run Rule

• After the clean rule, add the following:

• Try: make run, make clean, make run.

• Check-in when project is building.

33

Removing Repetitive Rules with Patterns (1 / 2)

• Notice the common structure to the
rules right...

• When many rules take on a pattern
where the target name is based on
the prerequisite name you can use a
pattern rule.

34

main.o: main.c
${CC} ${CC_FLAGS} -c main.c

Point.o: Point.c
${CC} ${CC_FLAGS} -c Point.c

Path.o: Path.c
${CC} ${CC_FLAGS} -c Path.c

Guards.o: Guards.c
${CC} ${CC_FLAGS} -c Guards.c

Pattern Rules (2 / 2)
• A Pattern Rule is one where the target contains a single % symbol

• If another rule's prerequisite(s) match a target pattern, then implicit rules are produced:
• The matched part of the % in the target is also substituted in its prerequisites.
• For example, with the rule above, since the top-level rule has Guards.o as a prerequisite, make generates an implicit

rule of:
Guards.o: Guards.c

${CC} ${CC_FLAGS} -c ${^}

• Automatic variables allow implicit recipes to use target ${@} and prerequisite ${^} values.

• Warning: A common misconception is that these rules are produced by make searching for matching
prerequisite files. This is not the case. For a pattern rule to produce implicit rules some other rule's
prerequisites must reference the pattern's target.

• Full Documentation:
https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html

https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html

Hands-on - A Pattern Rule

• Remove the repetitive rules and replace them with a pattern rule:

• Try: make clean, make run.

• Check-in when project is building.

36

make is goes far deeper than this tutorial

• As a 40-year old tool it has accumulated many capabilities

• Many features try to avoid redundancy and verbosity of the Makefile
• The downside is this leads to cryptic, non-obvious Makefiles

• Special features to use make for building specific kinds of projects
• i.e. C projects or archives

• Modern build systems like CMake will generate a Makefile specific to the system the
project is being built on.
• Eases portability between operating systems and versions.

• The documentation for make is generally very good:
• https://www.gnu.org/software/make/manual/make.html

https://www.gnu.org/software/make/manual/make.html

Many build tools are make-inspired

• Nothing stops you from using make for any project, but many ecosystems revolve
around tooling custom suited for their environment.

• C/C++ – make, Cmake, bazel

• Rust – cargo

• Java – Ant, Maven, Gradle, bazel

• Node.js / JavaScript / TypeScript – npm, webpack, gulp, grunt

• Python – Scons, Waf

