
Context-Free

Grammars

What is a grammar?

• MW: A system of rules that defines the structure of a language.

• CS: Very precise, theoretically sound rules defining computer languages.
• There are many classes of grammars, this is the focus of a Theory of Computation course.

• A language is the set of all strings that satisfy the rules of a grammar.

• Intuitively, a context-free grammars is made of:
• Terminals - the grammar's "alphabet" of symbols
• Non-terminals - syntactic variables where each represents a set of strings of terminals
• Production rules - the definition of a non-terminal that specifies its set of strings
• Start symbol - the single non-terminal which represents the set of all strings in language

Example

• Terminals: {'the', 'a', 'person', 'dog', 'spoke', 'ran', 'ate'}
• Our language's alphabet of symbols.

• Non-terminals: { phrase, article, noun, verb }
• These will be defined by production rules!

• Production rules:
phrase -> article noun verb
article -> 'the' | 'a'
noun -> 'person' | 'dog'
verb -> 'spoke' | 'ran' | 'ate'

• Start symbol: phrase
• Start symbol defines the set of all possible strings in our language.

Production Rules

• Each non-terminal is defined by a production rule.
• Begins with the non-terminal being defined, followed by an arrow, followed by definition.

• Consider the production rule: noun -> 'person' | 'dog'
• The non-terminal being defined is noun, the definition is 'person' | 'dog'
• The vertical bar symbol denotes a union relationship, or "or".

• This definition can be read as a noun is either the string 'person' or 'dog'.

• Another production rule: phrase -> article noun verb
• The non-terminal being defined is phrase, the definition is article noun verb
• When one symbol follows another, such as article noun, concatenation is implicit.

• This definition can be read as a phrase is an article and then a noun and then a verb.

Generating Strings from a Grammar
Goal: Generate a string of all non-terminals.

Strategy: Expand the non-terminals of a "working string".

1. To generate a string accepted by a grammar, your initial
"working string" is just the start symbol.
• In the grammar right, the start symbol is phrase.

• In COMP211 grammars, the start symbol is always underlined.

2. Choose a non-terminal in the "working string" and
expand it by substituting an instance of the non-
terminal's production rule.
• When there is union ("or"), designated by the vertical bar

symbol, choose only one of the two or more possible
alternatives.

• When there is a sequence of non-terminals or terminals, choose
the entire sequence.

3. When all symbols in the working string are terminals,
the process terminates. Otherwise, repeat Step 2.

phrase -> article noun verb
article -> 'the' | 'a'
noun -> 'person' | 'dog'
verb -> 'spoke' | 'ran' | 'ate'

Production Rules Continued

• The union "or" operator has lower precedence than concatenation "and then"

• Consider:
phrase -> article noun verb | phrase 'and' phrase

• Compare:
phrase -> (article noun verb) | (phrase 'and' phrase)

• These two definitions are equivalent because concatenation has higher precedence.

• Parenthesis can be used to override the standard order of operations.
Consider: phrase -> article noun (verb | phrase) 'and' phrase
What is terrifying about this definition?
It's infinitely recursive! We will avoid this dilemma.

Example: Using a Grammar to Generate Strings

phraseWorking String:

1. To generate a string accepted by a grammar, your
initial "working string" is just the start symbol.

Example: Using a Grammar to Generate Strings

10

phraseWorking String:

2. Choose a non-terminal in the "working string"
and expand it by substituting an instance of the
non-terminal's production rule.

Here we have a choice. Either we substitute with the
string of symbols:

article noun verb

OR

phrase "and" phrase

Union has lower
precedence than
concatenation!

Example: Using a Grammar to Generate Strings

11

phrase

3. When all symbols in the working string are
terminals, the process terminates. Otherwise,
repeat Step 2.

Working String: phrase "and" phrase

Are all symbols terminals? No!

Only "and" is a terminal. We need to
repeat Step 2.

Example: Using a Grammar to Generate Strings

12

phrase

Working String: phrase "and" phrase

2. Choose a non-terminal in the "working string"
and expand it by substituting an instance of the
non-terminal's production rule.

Let's choose the first alternative:

article noun verb

Example: Using a Grammar to Generate Strings

13

phrase

Working String:

phrase "and" phrase

article noun verb "and" phrase

3. When all symbols in the working string are
terminals, the process terminates. Otherwise,
repeat Step 2.

Are all symbols terminals? No!

Only "and" is a terminal. Repeat Step 2.

Example: Using a Grammar to Generate Strings

14

phrase

Working String:

phrase "and" phrase

article noun verb "and" phrase

2. Choose a non-terminal in the "working string"
and expand it by substituting an instance of the
non-terminal's production rule.

Choose either alternative!

Example: Using a Grammar to Generate Strings

15

phrase

Working String:

phrase "and" phrase

article noun verb "and" phrase

"a" noun verb "and" phrase

This process repeats in an
intuitive way, so we're going to
fast forward to the point where
the process terminates...

3. When all symbols in the working string are
terminals, the process terminates. Otherwise,
repeat Step 2.

Example: Using a Grammar to Generate Strings

16

phrase

Working String:

phrase "and" phrase

article noun verb "and" phrase

"a" noun verb "and" phrase

3. When all symbols in the working string are
terminals, the process terminates. Otherwise,
repeat Step 2.

"a" "person" verb "and" phrase

"a" "person" "waved" "and" phrase

"a" "person" "waved" "and" article noun verb

"a" "person" "waved" "and" "the" noun verb

"a" "person" "waved" "and" "the" "dog" verb

"a" "person" "waved" "and" "the" "dog" "smiled"

When the working string reaches
a point of all terminals you've
generated a string accepted by the
grammar!

Example: Using a Grammar to Generate Strings

17

phrase

phrase "and" phrase

"a" "person"
"waved

" "the" "dog" "smiled"

article noun verb article noun verb

Rather than rewrite a "working string" over and over,
it's more convenient to draw out a derivation tree.

The root node is the start symbol and each child is a
symbol from an instance of its production rule.

Derivation complete once all leaf nodes are terminals.

