
An introduction to the grammar of

Hands-on with vim

• Let's use vim to work on a Markdown file
• Markdown is a plaintext file format for writing

• Commonly used in programming projects' README files and documentation

• Easily converts to other formats such as HTML and PDF

• To download the Markdown file (capital L important):
• learncli$ curl -L http://bit.ly/markdown-file > example.md

• Then try running:
• vim example.md

In Normal Mode, is driven by a grammar!

3

Let's begin with a small subset of

the grammar and grow it...

Try entering
these terminals

into vim!

command -> cursor_to

cursor_to -> LOCATION

There are lots of location terminals in vim!

These are some of the most
commonly useful location keys
(terminals) in vim's little language.

To keep the information on the slides manageable,
we're going to cheat with this all caps convention
that assumes there are additional rules here not
shown (in table).

Location Terminal

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word b

next end of word e

find next / prev [c]har in line f[c] / F[c]

before next / prev [c]har in line t[c] / T[c]

toggle surrounding (, {, [, ... %

specific line # of file [line #]G

last line of file G

search for "foo" (regexp) /foo[enter]

next match of last search n

previous match of last search N

Crawling

Walking

Driving

Teleporting

search forward for "foo" (regexp) /foo[enter]

search backward for "foo" (regexp) ?foo[enter]

next match of last search n

previous match of last search N

specific line # of file [line #]G

last line of file G

find next / prev [c]har in line f[c] / F[c]

to before next / prev [c]har in line t[c] / T[c]

repeat last f or t location command ;

first char of line ^

last char of line $

next occurrence of word under cursor *

up / down / left / right j / k / h / l

next word w

previous word b

next end of word e

toggle surrounding (, {, [, ... %

T
ra

ve
l w

is
e

ly
.

Operations carry out actions on your text.

A command is either a cursor_to
motion OR an operation.

An operation is a verb
followed by a cursor_to.

Change - cuts text, transitions to insert mode

Delete - cuts text

Yank - copies text

Let's generate a command string!
command

operation

verb cursor_to

change

'c'

end of line

'$'

"Change from cursor
to end of line."

command -> cursor_to | operation

cursor_to -> LOCATION

operation -> VERB cursor_to

Our grammar now has two high-level commands!

Verb Terminal

change c

delete d

yank y

Location Terminal

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word b

next end of word e

find next / prev [c]har in line f[c] / F[c]

before next / prev [c]har in line t[c] / T[c]

toggle surrounding (, {, [, ... %

specific line # of file [line #]G

last line of file G

search for "foo" (regexp) /foo[enter]

next match of last search n

previous match of last search N

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> repeated_verb

repeated_verb -> delete delete |

change change |

yank yank

Line operations apply a verb to the whole line.

A repeated_verb is either

a delete followed by a delete OR

a change followed by a change OR

a yank followed by a yank.

Let's generated a line_operation string!

command

line_operation

repeated_verb

delete delete

'd' 'd'

command -> cursor_to | operation | line_operation

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

Notice the grammar composes concepts!

An operation composes the concept of
moving your cursor with an action verb.

It's so common you want to delete or change a whole line there's a
convention of repeating a verb twice to do so.

Composition gives you combinatoric superpowers.

The # of commands you know is multiplier of your VERBS x LOCATIONS.

command -> n_repeats? (cursor_to | operation | line_operation)

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

n_repeats -> digit | digit n_repeats

digit -> '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

You can repeat / "scale" these commands, too!

The question mark is syntactical
sugar for "optional".

You can read this as "a command is
optionally an n_repeats followed

by either a..."

command -> n_repeats? (cursor_to | operation | line_operation)

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

Let's generate a repeated line_operation string!

command

line_operationn_repeats

repeated_verb

digit

'3'

delete delete

'd' 'd'
The command deletes three lines.

command -> n_repeats? (cursor_to | operation | line_operation | to_insert_mode)

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

to_insert_mode -> insert | insert_below | append | ...

insert -> 'i'

insert_below -> 'o'

append -> 'a'

...

Changing to Insert Mode

To Insert Mode Key

insert i

insert at start of line I

insert new line below o

insert new line above O

append after cursor a

append at end of line A

change to end of line C

command -> CURSOR_TO | operation | LINE_OPERATION | TO_INSERT_MODE

operation -> N_TIMES? VERB CURSOR_TO | VERB (inside | around) text_object

inside -> 'i'

around -> 'a'

object -> surrounding | word

surrounding -> ')' | ']' | '}' | '"' | '\'" | '`' | '>'

word -> 'w'

vim Grammar - Text Objects

Text Object Operation Examples

"Change Inside Parentheses"
Before: foo(1, 2)
Command: ci)
After: foo() (in insert mode)

"Change Around Parentheses"
Before: foo(1, 2)

Command: ca)

After: foo (in insert mode)

command -> n_repeats? (cursor_to | operation | line_operation | TO_INSERT_MODE | misc)

cursor_to -> LOCATION

operation -> VERB cursor_to

line_operation -> REPEATED_VERB

misc -> replay_last_op

replay_last_op -> '.'

Replaying the Last Operation!

Wow! Think about this!

The last operation string you
formed can be replayed!

(Including line operations.)

command -> N_REPEATS? (cursor_to | operation | line_operation |TO_INSERT_MODE|MISC)

cursor_to -> LOCATION

operation -> VERB cursor_to | VERB ('i'|'a') OBJECT

line_operation -> VERB VERB

Normal Mode Grammar Cheat Sheet

To Insert Mode Terminal

insert i

insert at start of line I

insert new line below o

insert new line above O

append after cursor a

append at end of line A

change to end of line C

Verb Terminal

change c

delete d

yank y

Location Terminal

line below j

line above k

char left h

char right l

first char of line ^

last char of line $

next word w

previous word b

next end of word e

find next / prev [c]har in line f[c] / F[c]

before next / prev [c]har in line t[c] / T[c]

toggle surrounding (, {, [, ... %

specific line # of file [line #]G

last line of file G

search for "foo" (regexp) /foo[enter]

next match of last search n

previous match of last search N

Misc Key

undo / redo u / ctrl+r

replay last operation .

paste after / before p / P

delete a character x

backspace a character X

replace a character r<char>

Save (write) :w

Save + Quit ZZ

Quit no Save ZQ

Object Terminals

surrounding pair of " ' }])

word w

Hands-on: Updating .bash_profile

• Open your shell configuration file in vim:

• Navigate down to .

• Delete the leading #'s to uncomment the four export lines.

• Inside the "'s for AUTHOR_NAME and COMMITTER_NAME insert your first and last name.

• Inside the "'s for AUTHOR_EMAIL and COMMITTER_EMAIL insert the email address associated
with your GitHub account. If you don't have a GitHub account yet, use your UNC email address and
register for a GitHub account using it.

• Save and exit your file. Then run:

• You shouldn't see any errors!
19

