
Version Control Systems and



Why use a Version Control System (VCS)?

• Non-trivial software projects involve a lot of files

• Not only that, but there are lots of interdependent files
• Changing the name of a function or method means every file referencing it needs to be 

updated consistently, too.

• When working on a project, you want to be able to:
• Try out changes and refactorings without risk of losing known-good work!

• Review the history of a project to know when and why certain changes were made or 
determine when some issue started to arise

• Easily collaborate on complete snapshots of projects and features with a team

• Switch between versions (v1.0 vs v2.0) to go back and fix bugs

• ... and more!



What do Version Control Systems do?

• Track and store changes to files in a project's "source code repository" over time
• Typically via atomic snapshots for the set of all files in a project

• Have workflows for collaborators to contribute to the same source code repository
• Features for working independently and then "pushing" your work to a shared repository

• Features for "pulling" others' work into your independent repository

• Policies and procedures on how to handle conflicting changes between collaborators

• Are built with features for you to explore ideas without impacting stable version
• In git this is the purpose of branching

• Version Control Systems can be centralized in a client-server model or distributed
• git is distributed -- when you clone a repository you have a complete replica of it!



Why git over another VCS?

• Initially developed in 2005 by Linus Torvalds, creator of Linux, to be the 
version control system for the Linux operating system's code.

• In the last decade, git won out as the de facto VCS of engineers.
• Previously: SVN (Subversion 2000) and CVS (Concurrent Versions System 1990) 

• Contemporary: Mercurial (2005)

• Why did git win?
• It's fast... remarkably performant compared to prior VCS systems.

• It's distributed... everyone has a project's complete history, no internet needed.

• It's immutable by default... it takes effort to mutate existing commits.

• It's append-only... it takes effort to delete old work since new changes are appended.

• It's robust... it ensures integrity of data to avoid corruptions.



What is GitHub versus git?

• git is Version Control System software you install and use locally

• GitHub is a social web site for sharing and collaborating on projects whose 
source code is maintained with the git VCS

• You can use git without using GitHub, but not vice-versa.

• You should make a personal GitHub account and:

1. Update your full name, location, and UNC affiliation in your profile

2. Add a profile picture of yourself

3. Add your UNC e-mail address if you signed up with a personal e-mail acct


