
Fundamental Concepts in

Project Working Directory The .git Repository

Steps 1 and 2 created
the "working directory"
which is named git-
demo.

You will also see this
directory referred to as
the working tree's root
in git.

Steps 3-5 initialized the hidden .git directory to be an empty Git repository.
We'll learn how to configure a system so that steps 4 and 5 are globally defined.

Project Working Directory The .git Repository

hello.c

Project Working Directory The .git Repository

hello.c

Commit 0 parents 0

Message
First commit!

hello.c

The "commit staging area" will be discussed soon.

For now, know that a commit (think: project
snapshot) with hello.c's contents was created and
is stored in the .git directory.

Project Working Directory

hello.c

README.md

README.md is a markdown file
documenting the project. When you work
on a project it's a best practice to have a
README file describing how the project is
organized, how to build the project, how
to contribute to it, and so on.

echo "# TODO: Everything" >README.md

git add README.md

git commit -m "Add a README file."

Commit 1 parents Commit 0 parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

We'll discuss the
updated commit history
in the next few slides!

Project Working Directory The .git Repository

Commit 1 parents Commit 0 parents 0

Message
First commit!

Message
Add a README file.

This is your project's commit history!

A commit is a snapshot, or backup, of your project's files at a specific
moment in your project's history.

Each of these commits was created when you ran git commit. Next we'll
discuss exactly what happens as these commits are formed.

Where is this data stored? In the .git/ folder in your project.

hello.chello.c

README.md

hello.c

README.md

Project Working Directory The .git Repository

The second commit holds a reference to its parents, or "previous" commits.

In a simple repository, think of the chain of commits as a singly linked list.

In actuality, the history of commits is a directed-acyclic graph.
This distinction is not important until making use of branching and collaboration.

hello.c

README.md

Commit 1 parents Commit 0 parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Project Working Directory The .git Repository

Only README was added to Commit #1. No changes to hello.c.

Files whose contents changed in a commit are shown in blue below. Files that
did not change are shown in white and linked to their last changed version.

What is an important file change?
The person making the commit decides! It's any file 'ed to the commit.

hello.c

README.md

Commit 1 parents Commit 0 parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Project Working Directory The .git Repository

Each commit has a message describing what is important about it.
A message can be a single line, or a header line and narrative.

The author of a commit writes this message.
Your commits should always have informative messages!

Each commit also has a timestamp and author name/e-mail.

hello.c

README.md

Commit 1 parents Commit 0 parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Project Working Directory The .git Repository

Each commit has a unique identifier (ID) formed by hashing the commit's:
- new/changed file contents of the commit.
- metadata such as parent commits, message, author, timestamp, etc.

The hash algorithm is the cryptographic SHA1 algorithm. It produces IDs like:
47c2660dcded7b2a27d7b56b017b23574b6200c2

Referencing commit IDs in git requires only enough characters to uniquely
identify a commit ID in a repository's history. 4-chars will be enough for now!

hello.c

README.md

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Aside: Hashing is a COMP410/210 subject. If this is new to you, a
hand-waving explanation is its an algorithm for generating a unique,
fixed-length output from an arbitrary-length input.

The same input will always give the same output hash. Thus, by
using the contents of a commit as the input to a hash and the output
as the commit's ID, git can use the ID to guarantee correctness and
completeness of the data it has saved in the commit.

Project Working Directory The .git Repository

Suppose you deleted a lot of code in hello.c, saved, and then
realized you needed it back...

...with your history in git, it's easy to checkout a committed
version of a file without fear of loss.

You can also restore all files in a project back to a specific
commit in its history.

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

git checkout -- hello.c

Project Working Directory The .git Repository

Imagine you've made changes to hello.c, compiled, and and are
ready to commit those changes to the history of the project.

How do you make a commit?

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

a.out

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Project Working Directory The .git Repository

The first step in making a commit is adding your important file changes to the staging area.

What you add to your staging area is saved behind the scenes in the .git repository.

Staging Area

hello.c

README.md

a.out

When responds with:

no changes added to commit

There is nothing in the staging area ready to commit.

You can check the current state of your Staging Area
with the git status command.

Project Working Directory The .git Repository

The only important file we want to stage is hello.c, so we use
the git add command (above) to add it to the staging area.

We specifically don't want the compiled binary file a.out added
to our source code repository.

As a general rule of thumb, it is a best practice not to store
files built from source code in version control.

Staging Area

git add hello.c

git status

hello.c

README.md

a.out

hello.c

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

Project Working Directory The .git Repository
Staging Area

parents

Message
Another printf!

git commit -m "Another printf!"

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

a.out

hello.c

hello.c

README.md

The git commit command packages up your
staging area and converts it into a commit.

Notice, git takes care of establishing the parents
link and links to previous versions of files
unchanged in this commit.

Also notice, the a.out file is not a part of the commit
history!

Project Working Directory The .git Repository
Staging Area

git status

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

hello.c

README.md

a.out

Project Working Directory The .git Repository
Staging Area

The default, primary branch is named master in git.

A branch is just a special reference to a specific
commit ID in the repository.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

hello.c

README.md

a.out

Project Working Directory The .git Repository
Staging Area

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

HEAD

git log --oneline
hello.c

README.md

a.out

Your repository's HEAD refers to the branch you are
working on in your working directory/tree.

The log subcommand displays your commit history
relative to your HEAD. The --oneline option produces
a concise, ID/Branch/Message only output.

Project Working Directory

index
.html

style
.css

READ
ME

TOD
O

The .git Repository
Staging AreaWorking on a branch is recommended for

trying out new ideas.

When a new branch is created it refers to the
commit ID you are currently working on.

Thus, two or more branches can refer to the
exact same commit ID and commit history.

When you checkout a branch:
1. The contents of all files in the commit the branch refers

to are copied into your working tree.
2. HEAD is updated to reference the checked-out branch

git checkout -b <name>
create and checkout branch <name>

git branch # list branches

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

HEAD

git branch <name> # create branch named <name>

git checkout <name> # checkout branch <name>
The two above commands are usually done together in a single command:

Project Working Directory The .git Repository
Staging Area

hello.c

README.md

a.out

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

HEAD

.gitignore

Any filenames listed in the a
.gitignore file are ignored by

and .

Project Working Directory The .git Repository
Staging Area

Step 1) git add to staging area.

git add .gitignore

hello.c

README.md

a.out

.gitignore

.gitignore

hello.c git add hello.c

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

HEAD

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

.gitignore

hello.c

Project Working Directory The .git Repository
Staging Area

git commit -m "Add .gitignore"

parents

hello.c

README.md

a.out

.gitignore

HEAD feature

hello.c

README.md

.gitignore

Whoa! Notice the feature
branch and HEAD were
updated to refer to the new
commit.

The master branch remained in
place.

This is what's special about
branches. The branch HEAD
refers to is updated to a
new commit.

Project Working Directory

index
.html

style
.css

READ
ME

TOD
O

The .git Repository
Imagine making additional
commits on this "feature branch".

You can easily checkout the
master branch and continue
working from there, though.

You could also easily start a
other branches to explore other
feature ideas.

Good idea? Merge the feature
branch back into the master
branch. (Up next!)

Bad idea? Checkout the master
branch and delete the feature
branch.

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

parents

HEAD feature

hello.c

README.md

.gitignore

Project Working Directory The .git Repository

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

master

parents

HEAD

feature

hello.c

README.md

.gitignore

hello.c

README.md

a.out

git checkout master

Remember, when you checkout a branch:
1. The contents of all files in the commit

the branch refers to are copied into your
working tree.

2. HEAD is updated to reference the
checked-out branch

Project Working Directory The .git Repository

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

parents

feature

hello.c

README.md

.gitignore

hello.c

README.md

a.out

git merge feature

HEAD

This scenario is called a fast-forwarding
merge because the master branch's
reference to could simply be moved
forward on a linear sequence of commits.

Soon you will see scenarios where fast-
forwarding is not possible. For example,
imagine more commits had been made to
the master branch and their histories
diverged. In this case git merge would need
to create a new merge commit with two
parents to merge the histories together.

Project Working Directory The .git Repository

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

parents

hello.c

README.md

.gitignore

hello.c

README.md

a.out

git branch --delete feature

masterHEAD

In general, git is designed to make it difficult for
you to accidentally destroy work.

If you had tried to delete the feature branch
before merging it would have told you it
contained unmerged changes and asked if you
were really sure.

Additionally, when you checkout a branch, if you
have uncommitted changes in your working
directory it will prevent you from doing so and
overwriting them.

.gitignore

Project Working Directory The .git Repository

Message
Add .gitignore.

parents

Message
Another printf!

parents parents 0

Message
First commit!

Message
Add a README file.

hello.chello.c

README.md

hello.c

README.md

parents

hello.c

README.md

.gitignore

hello.c

README.md

a.out

masterHEAD

.gitignore

git push origin <branch>
Uploads changes to remote repo

When you push to a remote branch, your
local branch's commit history is
uploaded to the remote repository and
the remote repository's corresponding
branch is updated to reference the same
as your latest.

You are effectively causing your local
branch to be mirrored in the remote
branch.

This will happen when you push your
changes in a problem set before
submitting to autograding.

