Base-10 Decimal

Base-10 A Familiar Number System

- You've grown up with the **Decimal**, or Base10, number system
- Digits Set {0, 1, 2, ..., 9}
 - How many digits total?
- High-order place values come before low-order
 - 500_{10} is 5×10^2 Five hundred
 - 050_{10} is 5×10^1 Fifty
 - 005₁₀ is 5 x 10⁰ Five
- Incrementing a place value beyond 9 causes a carry
 - 09 + 01 is 10
 - the next higher-order place value increases by one
 - the lower-order place value resets back to zero

Base ₁₀
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Formalization of Base-10

Suppose we define a Base10 number *d*, with *w* place values, (*w stands for width*) as a vector of **decimal digits**:

$$\vec{d} = [d_{w-1}, d_{w-2}, \dots, d_0]$$

We can determine the value of \vec{d} with the following summation:

$$DecimalValue_{w}\left(\vec{d}\right) = \sum_{i=0}^{w-1} d_{i}10^{i}$$

Formalization of Base-10

Suppose we define a Base10 number *d*, with *w* place values, (*w stands for width*) as a vector of **decimal digits**:

$$\vec{d} = [d_{w-1}, d_{w-2}, \dots, d_0]$$

We can determine the value of \vec{d} with the following summation:

$$DecimalValue_{w}\left(\vec{d}\right) = \sum_{i=0}^{w-1} d_{i}10^{i}$$

A concrete example: w = 3 $d_2 = 2$ $\vec{d} = [2, 1, 1]$ thus $d_1 = 1$ $d_0 = 1$

 $DecimalValue_{3}([2, 1, 1])$ $= \sum_{i=0}^{2} d_{i}10^{i}$ $= d_{0} \times 10^{0} + d_{1} \times 10^{1} + d_{2} \times 10^{2}$ $= 1 \times 10^{0} + 1 \times 10^{1} + 2 \times 10^{2}$ = 1 + 10 + 200 = 211