Base-10 Decimal

Base-10 A Familiar Number System

- You've grown up with the Decimal, or Base10, number system
- Digits Set $\{0,1,2, \ldots, 9\}$
- How many digits total?
- High-order place values come before low-order
- 500_{10} is 5×10^{2} - Five hundred
- 050_{10} is 5×10^{1} - Fifty
- 005_{10} is 5×10^{0} - Five
- Incrementing a place value beyond 9 causes a carry
- $09+01$ is 10
- the next higher-order place value increases by one
- the lower-order place value resets back to zero

Formalization of Base-10

Suppose we define a Base10 number d, with w place values, (w stands for width) as a vector of decimal digits:

$$
\vec{d}=\left[d_{w-1}, d_{w-2}, \ldots, d_{0}\right]
$$

We can determine the value of \vec{d} with the following summation:

$$
\operatorname{DecimalValue}_{w}(\vec{d})=\sum_{i=0}^{w-1} d_{i} 10^{i}
$$

Formalization of Base-10

Suppose we define a Base10 number d, with w place values, (w stands for width) as a vector of decimal digits:

$$
\vec{d}=\left[d_{w-1}, d_{w-2}, \ldots, d_{0}\right]
$$

We can determine the value of \vec{d} with the following summation:

$$
\operatorname{DecimalValue}_{w}(\vec{d})=\sum_{i=0}^{w-1} d_{i} 10^{i}
$$

A concrete example:

$$
\begin{array}{ll}
w=3 & d_{2}=2 \\
\vec{d}=[2,1,1] & \text { thus } \\
d_{1}=1 \\
d_{0}=1
\end{array}
$$

DecimalValue 3 ([2, 1, 1])

$$
\begin{aligned}
& =\sum_{i=0}^{2} d_{i} 10^{i} \\
& =d_{0} \times 10^{0}+d_{1} \times 10^{1}+d_{2} \times 10^{2} \\
& =1 \times 10^{0}+1 \times 10^{1}+2 \times 10^{2} \\
& =1+10+200
\end{aligned}
$$

$$
=211
$$

