Base-16 Hexadecimal

Base-16 Hexadecimal

Hexadecimal/Base-16, is convenient for bit patterns

Digits {0, 1, 2, ..., 9, *A*, *B*, ..., *F*}

High-order place values come before low-order 400_{16} is $4 \times 16^2 - 1024$ 020_{16} is $2 \times 16^1 - 32$ 006_{16} is $6 \times 16^0 - 6$

Incrementing a place value beyond 1 causes a carry 01 + 0F is 10

the next higher-order place value increases by one the lower-order place value resets back to zero

Hexadecimal ₁₆	<u>Binary</u> 2	Decimal ₁₀
Θ	0000	00
1	0001	01
2	0010	02
3	0011	03
4	0100	04
5	0101	05
6	0110	06
7	0111	07
8	1000	08
9	1001	09
А	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

Formalization of *Unsigned* Hex Values

Suppose we define a Base-16 number *h*, with *w* place values, (*w stands for width*) as a vector of **hex digits**:

$$\vec{h} = [h_{w-1}, h_{w-2}, \dots, h_0]$$

We can determine the value of \vec{d} with the following summation:

$$Hex2Unsigned_{w}\left(\vec{h}\right) = \sum_{i=0}^{w-1} h_{i}16^{i}$$

A concrete example: $\vec{h} = [A, F]$

<u>Hexadecimal₁₆</u>	<u>Decimal₁₀</u>
Θ	00
1	01
2	02
3	03
4	04
5	05
6	06
7	07
8	08
9	09
А	10
В	11
С	12
D	13
E	14
F	15

Formalization of *Unsigned* Hex Values

Suppose we define a Base-16 number *h*, with *w* place values, (*w stands for width*) as a vector of **hex digits**:

$$\vec{h} = [h_{w-1}, h_{w-2}, \dots, h_0]$$

We can determine the value of \vec{d} with the following summation:

$$Hex2Unsigned_{w}\left(\vec{h}\right) = \sum_{i=0}^{w-1} h_{i}16$$

A concrete example:

$$w = 2$$

$$\vec{h} = [A, F] \quad thus \begin{array}{l} h_1 = A \\ h_0 = F \end{array}$$

 $Hex2Unsigned_2([A, F])$

- $=\sum_{i=0}^{1}h_i16^i$
- $=h_0\times 16^0+h_1\times 16^1$
- $= F \times 16^0 + A \times 16^1$
- $= 15 \times 1 + 10 \times 16$

<u>Hexadecimal₁₆</u>	<u>Decimal₁₀</u>
Θ	00
1	01
2	02
3	03
4	04
5	05
6	06
7	07
8	08
9	09
А	10
В	11
С	12
D	13
E	14
F	15