Signed Integer Representation Using

## Two's <br> Complement

Intuition

## The Intuition of Two's Complement Representation of Signed Integers

- Big Idea:

Negate the value of the highest order bit and treat every other bit the same.

- Example:
- 0b1000 to an unsigned decimal is: $\mathbf{1 \times \mathbf { 2 } ^ { \mathbf { 3 } } \rightarrow \mathbf { 8 }}$
- Ob1000 to a two's complement signed decimal is: $\mathbf{- 1 \times \mathbf { 2 } ^ { 3 } \rightarrow - \mathbf { 8 }}$


## Two's Complement Signed Binary Values

Suppose we define a Base-2 number $b$, with $w$ place values, ( $w$ stands for width) as a vector of binary digits:

$$
\vec{b}=\left[b_{w-1}, b_{w-2}, \ldots, b_{0}\right]
$$

We can determine the value of $\vec{d}$ with the following equation:

A concrete example:

$$
b_{3}=1
$$

$$
w=4
$$

$$
b_{2}=1
$$

$$
\vec{b}=[1,1,1,0] \quad \text { thus } \quad b_{1}=1
$$

Binary2TwosComplement $_{4}([1,1,1,0])$

Binary 2 TwosComplement $_{w}(\vec{b})=$

$$
-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}
$$

## Two's Complement Signed Binary Values

Suppose we define a Base-2 number $b$, with $w$ place values, ( $w$ stands for width) as a vector of binary digits:

$$
\vec{b}=\left[b_{w-1}, b_{w-2}, \ldots, b_{0}\right]
$$

We can determine the value of $\vec{d}$ with the following equation:

Binary 2 TwosComplement $_{w}(\vec{b})=$

$$
-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}
$$

A concrete example:

$$
b_{3}=1
$$

$$
w=4
$$

$$
b_{2}=1
$$

$$
\begin{aligned}
\vec{b}=[1,1,1,0] \quad \text { thus } \quad b_{1} & =1 \\
b_{0} & =0
\end{aligned}
$$

Binary2TwosComplement $_{4}([1,1,1,0])$

$$
\begin{aligned}
& =-b_{w-1} 2^{3}+\sum_{i=0}^{2} b_{i} 2^{i} \\
& =-b_{3} \times 2^{3}+b_{0} \times 2^{0}+b_{1} \times 2^{1}+b_{2} \times 2^{2} \\
& =-1 \times 2^{3}+0 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2} \\
& =-8+0+2+4 \\
& =-2
\end{aligned}
$$

## Negation of a Two's Complement Value

- To negate any signed-value with Two's Complement representation:

1. Take the complement ( $\sim$ ) of all bits ( $0 \mathrm{~s}->1 \mathrm{~s}, 1 \mathrm{~s}->0 \mathrm{~s}$ )
2. Add 1

$$
\begin{aligned}
\vec{b} & =[0,0,0,1]=1 & \vec{b} & =[1,1,1,1]=-1 \\
\sim \vec{b} & =[1,1,1,0]=-2 & \sim \vec{b} & =[0,0,0,0]=0 \\
\sim \vec{b}+[0,0,0,1] & =[1,1,1,1]=-1 & \sim \vec{b}+[0,0,0,1] & =[0,0,0,1]=1
\end{aligned}
$$

## Interesting Properties of Two's Complement

- Place values $\boldsymbol{w}-\mathbf{2}$... 0 are the same regardless of signed or unsigned
- No steps needed to convert between the two!
- The only difference is how you interpret the high-order bit.
- Moving a signed number to a larger memory width only requires extending the left most bit to fill in the gap
- Negative numbers fill left place values with 1 s , positive with 0 s.
- This is called sign extension.
- Subtraction works the same for both signed and unsigned values: negate the subtracted value by taking the two's complement and then just use addition!
- Trade-off: Off-by-one asymmetry in negative versus positive range
- $-2^{w-1}$ to $2^{w-1}-1$ - one extra negative number compared with positive

