
ASCII

ASCII

• American Standard Code for
Information Interchange
• Work began in 1960

• Standardized in 1963

• 128 characters in low 7 bits of a byte
• 95 printable characters

• 33 non-printable control codes

• '\n' is LF - Line Feed - "The action of
advancing paper in a printing machine by
the space of one line."

• Ctrl+D emits EOT - End of Transmission

2

Source: https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

ASCII

"The committee voted to use a seven-bit code to minimize costs
associated with data transmission. Since perforated tape at the time
could record eight bits in one position, it also allowed for a parity
bit for error checking if desired."
Source: https://en.wikipedia.org/wiki/ASCII

3

0 0 0 0
3 2 1 0

0 0 0 0
7 6 5 4

2𝑖 8 4 2 1128 64 32 16

𝑖

𝒃

Reserved by ASCII

https://en.wikipedia.org/wiki/ASCII

00000000

00001010

00100001

00111111

01100100

01101100

01110010

01101111

01010111

00100000

00101100

01101111

01101100

01101100

01100101

01001000

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Contents2

00

0A

21

3F

64

6C

72

6F

57

20

2C

6F

6C

6C

65

48

Contents16

0

10

33

63

100

108

114

111

87

32

44

111

108

108

101

72

Contents10

'\0'

'\n'

'?'

'!'

'd'

'l'

'r'

'o'

'W'

' '

','

'o'

'l'

'l'

'e'

'H'

ContentsCC Strings are null terminated char arrays

• Null character '\0' is a byte with a 0 value

• Thus, the length of a string literal is always

of chars + 1 for null termination

character.

• The memory representation of a C string is

only its char array.
• In most higher-level languages, e.g. Java, a string's

length is also stored alongside the char array.

• So how would you find the length of a C "string"?

00000000

00001010

00100001

00111111

01100100

01101100

01110010

01101111

01010111

00100000

00101100

01101111

01101100

01101100

01100101

01001000

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Address Contents2

00

0A

21

3F

64

6C

72

6F

57

20

2C

6F

6C

6C

65

48

Contents16

0

10

33

63

100

108

114

111

87

32

44

111

108

108

101

72

Contents10

'\0'

'\n'

'?'

'!'

'd'

'l'

'r'

'o'

'W'

' '

','

'o'

'l'

'l'

'e'

'H'

ContentsCIn C, a variable's address is its first, lowest addressed

byte in memory.

• Arrays arrange for the 0th index to be the lowest

address. Why?

• Because finding the addresses of other indices is

easier arithmetic!

The example to the right illustrates how the string

literal "Hello, world?!\n" would be represented if

stored at memory address 0.

Notice it would be the exact same in memory as:
char a[16] = { 72, 101, 108, 108, 111, 44, 32, 87,

111, 114, 108, 100, 63, 33, 10, 0 }

uint8_t b[16]= {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,
0x6F,0x72,0x6C,0x64,0x3F,0x21,0x0A,0x00};

