ASCII

ASCII

- American Standard Code for Information Interchange
- Work began in 1960
- Standardized in 1963
- 128 characters in low 7 bits of a byte
- 95 printable characters
- 33 non-printable control codes
- '\n' is LF - Line Feed - "The action of advancing paper in a printing machine by the space of one line."
- Ctrl+D emits EOT - End of Transmission

USASCll code chart

					${ }^{0} 0_{0}$	0_{0}	${ }^{1} 1$	${ }^{0} 1$	${ }^{1} 0$	${ }^{1} 0$	${ }^{1} 10$	'1,
$\sqrt{1 / 5}$					0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	OLE	SP	0	0	P	,	p
0	0	0	1	1	SOH	DC1	!	1	A	0	0	9
-	0	1	0	2	STX	DC2	"	2	B	R	b	
0	0	1	1	3	ETX	DC3	\#	3	C	S	c	5
\bigcirc	0	0	0	4	EOT	DC4	:	4	0	T	d	,
0	0	0	1	5	ENQ	NAK	\%	5	E	U	e	\checkmark
0	0	1	0	6	ACK	SYN	8	6	F	v	1	\checkmark
0	0	1	1	7	BEL	ETB	,	7	6	w	9	w
1	1	0	0	8	BS	CAN	1	8	H	x	h	\times
1	10	0	1	9	HT	EM	1	9	1	Y	i	y
1	10	1	0	10	LF	Sue	*	:	J	2	j	2
	10	1	1	11	VT	ESC	+	:	K	[k	(
1	1	0	0	12	FF	FS		$<$	L	1	1	1
	1	0	1	13	CR	GS	-	$=$	M	3	m	T
	1	-	0	14	So	AS		$>$	N	ヘ	n	\sim
I	1	1	-	15	So	us	1	?	0	-	0	\sim

Source: https://en.wikipedia.org/wiki/ASCII

Reserved by ASCII

"The committee voted to use a seven-bit code to minimize costs associated with data transmission. Since perforated tape at the time could record eight bits in one position, it also allowed for a parity bit for error checking if desired."
Source: https://en.wikipedia.org/wiki/ASCII

C Strings are null terminated char arrays

- Null character ' $\backslash 0$ ' is a byte with a 0 value
- Thus, the length of a string literal is always \# of chars + 1 for null termination character.
- The memory representation of a C string is only its char array.
- In most higher-level languages, e.g. Java, a string's length is also stored alongside the char array.
- So how would you find the length of a C "string"?

	Contents ${ }_{2}$	Contents $_{16}$	Content $_{10}$	Contentsc
F	00000000	00	0	' \0'
E	00001010	0 A	10	' n^{\prime}
D	00100001	21	33	'?'
C	00111111	3 F	63	'!'
B	01100100	64	100	'd'
A	01101100	6C	108	'1'
9	01110010	72	114	'r'
8	01101111	6F	111	'o'
7	01010111	57	87	'W'
6	00100000	20	32	
5	00101100	2 C	44	,
4	01101111	6F	111	'o'
3	01101100	6 C	108	'1'
2	01101100	6 C	108	'1'
1	01100101	65	101	'e'
0	01001000	48	72	'H'

In C, a variable's address is its first, lowest addressed byte in memory.

- Arrays arrange for the 0th index to be the lowest address. Why?
- Because finding the addresses of other indices is easier arithmetic!

The example to the right illustrates how the string literal "Hello, world?! \n" would be represented if stored at memory address 0 .

Notice it would be the exact same in memory as:

```
char a[16] = { 72, 101, 108, 108, 111, 44, 32, 87, \(111,114,108,100,63,33,10,0\) \}
uint8_t b[16]= \{0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x57, \(0 \times 6 \mathrm{~F}, 0 \times 72,0 \times 6 \mathrm{C}, 0 \times 64,0 \times 3 \mathrm{~F}, 0 \times 21,0 \times 0 \mathrm{~A}, 0 \times 00\}\);
```

Contents $_{2}$	${\text { Content }{ }_{16} \text { 6 }}^{1}$	${\text { Content }{ }_{10} 10}^{1}$	Contentsc
F 00000000	00	0	' \0'
E 00001010	0 A	10	' \n'
D 00100001	21	33	'?'
C 00111111	3 F	63	'!'
B 01100100	64	100	'd'
A 01101100	6C	108	'1'
901110010	72	114	'r'
801101111	6F	111	'o'
701010111	57	87	'W'
600100000	20	32	
500101100	2 C	44	', '
401101111	6F	111	'o'
301101100	6 C	108	'1'
201101100	6C	108	'1'
101100101	65	101	'e'
$0 \quad 01001000$	48	72	'H'

