

• When you delete, change, or yank text, the text under the operation is
stored in a register

• By default, the text is stored in default register

• When you paste, by default the text pasted is from the default register
• p – Paste text after the cursor
• Shift+P – Paste text before the cursor

• In many CLI apps a "register" is a variable whose name is a single character.

• You address registers with the double quote "
• "a is register a
• "b is register b
• "" is register " (the default register)

• To place the text under the operation in a specific register, like variable
assignment in programming, you first specify the register, then the operation
which assigns to it:

"ay$ - Assign to register a the yanked text to the end of the line. (copy)
"bd$ - Assign to register b the text deleted to the end of the line. (cut)
"zc$ - Assign to register z the changed text to the end of the line. (cut)
"ap – Paste the contents of register a.

• Each time you delete (d) text it is pushed onto a historical register stack

• The stack has registers "1 through "9 where
• "1 is the last text you deleted
• "2 is the text deleted before "1
• …
• "9 is the text deleted before "8

• Two primary uses:
1. Accidentally deleted text a few operations ago? Check historical stack.
2. Offers "multiple clipboards" without having to name registers

• View the contents of all registers, with :registers or :reg

command -> CURSOR_TO | operation | LINE_OPERATION | TO_INSERT_MODE | paste

operation -> assign_to_register (N_TIMES? VERB CURSOR_TO | VERB TEXT_OBJECT)

paste -> read_from_register ('p' | 'P')

assign_to_register -> register

read_from_register -> register

register -> default_register | '"' register_name

default_register -> ε

register_name -> [a-z]

• To begin recording a vim macro, press the q key followed by a register name. For example:
• qm – begin recording a macro in the a register
• Notice the status bar tells you "recording @m"

• Then, enter your commands as you normally would.

• To stop recording a macro, press the q key again.

• To replay a macro, press the @ symbol followed by the macro name. For example:
• @m – replays the macro in register m

• Are these the same registers as what we cut and copy to? YES!!!
• You can paste your macro into the document!
• You can also write your macro in your document and then copy it to a register for use as a macro!

command_or_macro -> command | record_macro

command -> CURSOR_TO | OPERATION | … | replay_macro

record_macro -> 'q' register_name command* 'q'

replay_macro -> N_TIMES? ('@' register_name | replay_macro_again)

replay_macro_again -> '@' '@'

register_name -> [a-z]

We now have a construct in our grammar that
lets us compose commands together and allows

us to define our own compound commands!

Composition is a superpower of languages.

• v – Transition to visual mode. Select using location_to commands.
• to_register? c – change
• to_register? y – yank (copy)
• to_register? d – delete (cut)

• Shift+V – Transition to visual line mode.
• Verbs same as above
• > - Indent
• < - Unindent

• Control+v – Transition to visual block mode.
• Shift+i – Insert in front of block.

• Comment out block of code: Ctrl+v j j j Shift+i // Ctrl+[
• Shift+a – Insert after block

Ctrl+w, v- Split the window Vertically

Ctrl+w, s - Split the window horizontally

Ctrl-w, w - Cycle between windows

Ctrl-w (h|j|k|l) - Move to window
Move to left, down, up, right.

ZZ - Close split window (and save)

Ctrl-o - Open File Explorer

• x - Delete the character under the cursor

• <Ctrl>+A – Increase the number under the cursor by 1

• ~ - Toggle the case of the letter under the cursor

• r<char> - Replace the character under the cursor and stay in normal mode

• Shift+J - Join the next line onto the end of the current line.

