


What are each of the following values in Base10 decimal 
representation with a fixed number of possible digits?

1) 1/2

2) 1/3

3) 10
1

4

2



• How were you taught how to convert 
1

2
to decimal positional notation 0.5?

• Think about how non-trivial of a leap this conversion is! Where did that 5-digit come from?!

• Long division! Convert the following rational numbers to decimals: 
1

8
,
9

11

3

𝟏𝟏 )𝟗

• Perform long division of 1/8 and 11/9 up to 4 significant digits.

𝟖 )𝟏



4

-1 -2 -3 -43 2 1 0

.
103 102 101 100 10−1 10−2 10−3 10−4

1

101
1

102
1

103
1

104

1

10

1

100

1

1000

1

10000
1101001000 .

Negative place values are fractional.Digits = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }



5

Suppose we define a Base10 number with 
place values, (w whole, f fractional) as a 

vector of decimal digits indexed from -f to w
with an implicit decimal between 𝑑0 and 𝑑−1.

Ԧ𝑑 = 𝑑𝑤−1, … , 𝑑0 , 𝑑−1, … , 𝑑−𝑓+1, 𝑑−𝑓

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒10 Ԧ𝑑 = 

𝑖=−𝑓

𝑤−1

𝑑𝑖 × 10𝑖

We can determine the value of Ԧ𝑑
with the following summation:

A concrete example:

Ԧ𝑑 = 1, 0, 2, 5

𝑤 = 2
𝑑0 = 0

𝑑−1 = 2

𝑑−2 = 5

𝑓 = 2

𝑑1 = 1

𝐹𝑉10 1, 0, 2, 5 = 

𝑖=−𝑓

𝑤−1

𝑑𝑖 × 10𝑖



6

-1 -2 -3 -43 2 1 0

.
2𝑤 22 21 20 2−1 2−2 2−3 2−𝑓

1

21
1

22
1

23
1

2𝑓

1

2

1

4

1

8
...124… .

Negative place values are fractional.Digits = { 0, 1 }



1010.10102

7

-1 -2 -3 -43 2 1 0

.
23 22 21 20 2−1 2−2 2−3 2−4

1

21
1

22
1

23
1

2𝑓

1

2

1

4

1

8
1248 .

1

16



• Ratio-to-Decimal: Long division! Work out the long division below. 
• Write out your numbers in base-2 even if you're "thinking" in base-10.

8

𝟏𝟏𝟐)𝟏𝟐𝟏𝟎𝟎𝟐 )𝟏𝟐

𝟏𝟐
𝟏𝟎𝟎𝟐

𝟏𝟐
𝟏𝟏𝟐





What are each of the following values in Base10 decimal 
representation with a fixed number of possible digits?

1) 1.10 × 102

2) 2.11E-1

10



How can we best use a fixed number of digit positions 
to represent a wide range of fractional values?

11



• Consider the following formula: 𝒙 = 𝟏𝟎𝑬 × 𝑪
• The digits of E make up the exponent (aka order of magnitude)

• The digits of C make up the significand (aka coefficient or mantissa)

• Assume there is an implicit decimal point after the first digit of C!

• You have 3 positions to store base-10 digits 0-9 in order to represent any 𝒙
1. How many of the 3 positions would you allocate for E? To C?

• What is the largest value you can represent with your decision? The smallest?

• What are the fundamental trade-offs in allocating positions to E vs. C?

2. How would you represent negative Es without a negative symbol?
• With negative Es you can represent fractional values 𝟎 < 𝒙 < 𝟏 12



• Under this design, we can represent values between 0.01 and 9.99. 13

𝟎. 𝟎𝟏𝟏𝟎 𝟗. 𝟗𝟗𝟏𝟎

Smallest Non-zero Value Largest Value

𝟎. 𝟎𝟏𝟏𝟎 𝟗. 𝟗𝟗𝟏𝟎



𝟎. 𝟎𝟏𝟏𝟎

− −

𝟎. 𝟎𝟏𝟏𝟎

• Consider precision in terms of the "next closest" value you can represent to any 
number.
• From the smallest non-zero value it would be the next largest value
• From the largest value it would be the next smallest value

• Notice in this design we have a consistent precision throughout the entire range of values 
we can represent. The next closest value to any value in our range is always 0.01 away.



• Under this design, values range between 0.1 and 9.9 billion! 15

𝟏𝟎𝟏𝟎
𝟎 × 𝟎. 𝟏𝟏𝟎 𝟏𝟎𝟏𝟎

𝟗 × 𝟗. 𝟗𝟏𝟎

Smallest Non-zero Value Largest Value

𝟎. 𝟏𝟏𝟎 𝟗, 𝟗𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎𝟏𝟎



𝟏𝟎𝟏𝟎
𝟎 × 𝟎. 𝟏𝟏𝟎
𝟎. 𝟏𝟏𝟎

− −

𝟏𝟎𝟏𝟎
𝟗 × 𝟎. 𝟏𝟏𝟎

𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎𝟏𝟎

• Notice that you have dramatically lower precision as the exponent increases!

• There's also a significant imbalance between being able to represent 0 < x < 1 
and 1 < x < max. If we could represent negative exponents it would help!

The next closest 

representable 

value is 10 

million away!?!



• PollEv.com/compunc - what is the value of [2, 1, 1] in this proposal? 17

𝟏𝟎𝟏𝟎
𝟎−𝟒 × 𝟎. 𝟏𝟏𝟎 𝟏𝟎𝟏𝟎

𝟗−𝟒 × 𝟗. 𝟗𝟏𝟎

Smallest Value

𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏𝟎 𝟗𝟗𝟎, 𝟎𝟎𝟎. 𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
−𝟒 × 𝟎. 𝟏𝟏𝟎 𝟏𝟎𝟏𝟎

𝟓 × 𝟗. 𝟗𝟏𝟎

Largest Value

• Let's bias our exponent by -4
• Take our exponent and subtract 4 from it so that our biased E range is -4 to 5.

• Note: The -4 bias is itself a design decision with trade-offs. It could have been any number.



𝟏𝟎𝟏𝟎
𝟎−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎. 𝟎𝟎𝟎𝟏𝟐𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟏−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎. 𝟎𝟎𝟏𝟐𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟐−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎. 𝟎𝟏𝟐𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟑−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎. 𝟏𝟐𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟒−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏. 𝟐𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟓−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏𝟐. 𝟎𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟔−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏𝟐𝟎. 𝟎𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟕−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏𝟐𝟎𝟎. 𝟎𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟖−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏𝟐𝟎𝟎𝟎. 𝟎𝟏𝟎

𝟏𝟎𝟏𝟎
𝟗−𝟒 × 𝟏. 𝟐𝟏𝟎 𝟎𝟎𝟎𝟎𝟏𝟐𝟎𝟎𝟎𝟎.𝟏𝟎

There's a point floating 

around down there!

The significand's position 

gives a sense of precision.



• Under this design, values range between 0.00001 and 990,000! 19

Smallest Negative Value

−𝟗𝟗𝟎, 𝟎𝟎𝟎𝟏𝟎

• With a position to store a sign, we can represent positive and negative 
values across a wide range, with a loss 

Largest Negative Value

−𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏𝟎

Smallest Positive Value

+𝟎. 𝟎𝟎𝟎𝟎𝟏𝟏𝟎
Largest Positive Value

+𝟗𝟗𝟎, 𝟎𝟎𝟎𝟏𝟎





• Sign: 0 for positive, 1 for negative

• Bias: −𝟑𝟏𝟎
• Implicit binary point (.) following first significand digit

21

𝟐𝑬−𝑩 × 𝑪

1)

2)

• Convert the second number to decimal.



• What is the most significant digit in a binary floating point always 
going to be? ... 

• 1! So let's assume there's a leading 1 and get a free bit of precision!

22

These are the bits 

we would use to 

represent −510.



23

• What is the following minifloat bit pattern in decimal?

𝟐𝟏𝟎
𝑬−𝟑 × 𝑪𝟐

• How would you represent −4.2510 in minifloat?



24

You can't represent 0!?! Is there really no such thing as a free bit?

𝟐𝟏𝟎
𝑬−𝟑 × 𝑪



• Old proposal: Exponent ranges from 2−3 to 24

• New proposal: Exponent ranges from 2−2 to 23

• This frees up exponent bit patterns 000 and 111 for special cases!

• First special case: 000 in Exponent Field makes a Denormalized Value
• This is a denormalized value and has an implicit leading 0. in its significand

• Now we can represent 0! With: [

• The value of the exponent will be 1-bias (in our minifloat: 1-3: -2)
• With the same minimum exponent but without the leading 1, we can represent values even 

closer to 0 than in normalized form.



26

𝟐𝟏𝟎
𝟏−𝟑 × 𝟏. 𝟎𝟎𝟎𝟏𝟐

𝟎. 𝟎𝟏𝟎𝟎𝟎𝟏𝟐

𝟐𝟏𝟎
−𝟐 × 𝟎. 𝟎𝟎𝟎𝟏𝟐

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟏𝟐

Notice denormalized has the same 

exponent as the smallest possible 

normalized exponent.

You can tell this is denormalized

because all 0's in exponent bits.

You can tell this is normalized

because not all 0's and not all 1's 

in exponent bits.

No leading 1 enables us to 

represent values closer to 0!



• Three special cases can be encoded when the exponent is all 1's:

•

•

• Not a Number: When any bit in the significand is not a 0.

27



• Floating point standard established in 1985
• Effectively all modern floating-point implementations use the standard!

• Floating point patterns are made of:

1. leading sign-bit, followed by 
2. biased exponent bits followed by
3. significand bits with an implicit leading 1.

• Special cases when exponent field is all 
• 0's - Denormalized - implicit leading 0 in significand
• 1's - Special values - +/- infinity, NaN

• Single-precision Floating Point: 32-bits
• This is a in C, Java, and so on

• Double-precision Floating Point: 64-bits
• This is a double in C, Java, and so on

28

32-bit float

Exponent Bits 8

Bias -127

Significand Bits 23

64-bit double

Exponent Bits 11

Bias -1023

Significand Bits 53

𝟐𝑬−𝑩 × 𝑪



• Best I've found: https://float.exposed/

• I would encourage challenging yourself to make conversions to and 
from half-width floating point precision:

• 1 Sign Bit

• 5 Exponent Bits, -15 Bias

• 10 Significand Bits

29

https://float.exposed/


• You lose precision as your numbers grow away from 0
• double's maximum value is 1.8 × 10308 - next value is is 2.0 × 10292 away!
• Takeaway: If you are working with large numbers and precision matters:

• Spend a lot more time on the numerical analysis of floating point appropriateness, or 
• Use an arbitrary precision arithmetic library (no loss in precision for loss in performance)

• Many values cannot be represented without some round-off error:
• Examples: Τ1 3 , 0.110
• This leads to surprising outcomes: 0.1 + 0.2 != 0.3
• Takeaway: If you are using relational operators (==, !=, >, <) with floating point values you 

should use a method for determining if they're nearly equal.
• Naive intuition: abs(a - b) < epsilon -- where epsilon is 0.0001 this fails in many edge cases!
• If you're doing this, consult the internet and public documentation on best practices

• Floating point arithmetic is not associative: 
• (a + b) + c does not always equal a + (b + c)
• When testing for exact equality this is nearly always a concern due to round-off
• When testing for near equality this can be a concern if the exponents of a, b, and c are very 

different from one another
30


