/unc/comp211 Systems Fundamentals

Toward Floating Points Fractional Numbers

© 2020 Kris Jordan All Rights Reserved

Refresher: Base 10 Decimals

What are each of the following values in Base10 decimal representation with a fixed number of possible digits?

1) 1/2

2) 1/3

3) $10\frac{1}{4}$

How do you go from a ratio to a decimal?

- How were you taught how to convert $\frac{1}{2}$ to decimal positional notation 0.5?
 - Think about how non-trivial of a leap this conversion is! Where did that 5-digit come from?!
- Long division! Convert the following rational numbers to decimals: $\frac{1}{8}$, $\frac{9}{11}$

• Perform long division of 1/8 and 11/9 up to 4 significant digits.

Fractional/Positional Place Values in Base 10

Digits = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Negative place values are fractional. 3 2 1 0 -2 -1 -3 -4 0 10^{-2} 10^{-3} 10^{-4} 10^{3} 10² 10^{0} 10^{-1} 10^{1} 1 1 1 1 $\overline{10^{2}}$ $\overline{10^1}$ 10^{3} $\overline{10^{4}}$ 1 1 10 1 100 1000 10 100 1000 10000

Formalization of Fractional Values in Base-10

Suppose we define a Base10 number d, with w+f place values, (*w whole, f fractional*) as a vector of **decimal digits** indexed from *-f* to *w* with an *implicit decimal between* d_0 and d_{-1} .

$$\vec{d} = [d_{w-1}, \dots, d_0, d_{-1}, \dots, d_{-f+1}, d_{-f}]$$

We can determine the value of \vec{d} with the following summation:

$$FractionalValue_{10}\left(\vec{d}\right) = \sum_{i=-f}^{w-1} d_i \times 10^i$$

A concrete example: w = 2 d f = 2 thus d $\vec{d} = [1, 0, 2, 5]$ d

 $d_{1} = 1$ $d_{0} = 0$ $d_{-1} = 2$ $d_{-2} = 5$

 $FV_{10}([1,0,2,5]) = \sum_{i=-f}^{w-1} d_i \times 10^i$

Fractional/Positional Place Values in Base 2

Digits = $\{0, 1\}$ Negative place values are fractional. 3 2 1 0 -2 -3 -1 -4 0 2^{-3} 2^{-1} 2^{-2} 2**-***f* 2^{2} 2^{1} 20 2^{w} 1 1 2^{2} $\frac{1}{2^{3}}$ $\overline{2^f}$ $\overline{2^{1}}$ 2 1 4 4 ... $\overline{2}$ 8 ...

Practice: Convert 1010.1010₂ to rational and positional representations.

How do you go from base-2 ratio to base-2 decimal? *And* base-10 representation?

- Ratio-to-Decimal: Long division! Work out the long division below.
 - Write out your numbers in base-2 even if you're "thinking" in base-10.

/unc/comp211 Systems Fundamentals

Toward Binary Floating Points Decimal Floating Points

© 2020 Kris Jordan All Rights Reserved

Refresher: Base 10 Decimals

What are each of the following values in Base10 decimal representation with a fixed number of possible digits?

1) 1.10×10^2

2) 2.11E-1

How can we best use a fixed number of digit positions to represent a wide range of fractional values?

Design Challenge: Representing Fractional Values w/ a Finite # of Digits

- Consider the following formula: $x = 10^{E} \times C$
 - The digits of **E** make up the *exponent* (aka order of magnitude)
 - The digits of C make up the *significand* (aka coefficient or mantissa)
 - Assume there is an implicit decimal point after the first digit of C!

- You have 3 positions to store base-10 digits 0-9 in order to represent <u>any</u> x
 - 1. How many of the 3 positions would you allocate for E? To C?
 - What is the largest value you can represent with your decision? The smallest?
 - What are the fundamental trade-offs in allocating positions to E vs. C?
 - 2. How would you represent negative Es *without* a negative symbol?
 - With negative Es you can represent fractional values 0 < x < 1

Design Proposal: 0 Exponent Digits, 3 Significand Digits

Smallest Non-zero Value

Largest Value

 $\begin{array}{c} 0.01_{10} & 9.99_{10} \\ 0.01_{10} & 9.99_{10} \end{array}$

• Under this design, we can represent values between 0.01 and 9.99. 13

Design Evaluation - Precision

- Consider precision in terms of the "next closest" value you can represent to any number.
 - From the smallest non-zero value it would be the next largest value
 - From the largest value it would be the next smallest value
- Notice in this design we have a consistent precision throughout the entire range of values we can represent. The next closest value to any value in our range is always 0.01 away.

Design Proposal: 1 Exponent Digit, 2 Significand Digits

Smallest Non-zero Value

Largest Value

Under this design, values range between 0.1 and 9.9 billion!

Design Evaluation - Precision Exponent Digits Buy You Range at the Cost of Precision

- Notice that you have **dramatically lower precision** as the exponent increases!
- There's also a significant *imbalance* between being able to represent 0 < x < 1 and 1 < x < max. If we could represent *negative exponents* it would help!

Modified Design Proposal: 1 Biased Exponent Digit, 2 Significand Digits

- Let's bias our exponent by -4
 - Take our exponent and subtract 4 from it so that our biased E range is -4 to 5.
 - Note: The -4 bias is itself a design decision with trade-offs. It could have been *any* number.

• PollEv.com/compunc - what is the value of [2, 1, 1] in this proposal? 17

"Floating Point"

0	1	2
1	1	2
2	1	2
3	1	2
4	1	2
5	1	2
6	1	2
7	1	2
8	1	2
9	1	2

There's a point floating around down there! $10_{10}^{0-4} \times 1.2_{10}$ $10_{10}^{1-4} \times 1.2_{10}$ $10_{10}^{2-4} \times 1.2_{10}$ $10_{10}^{3-4} \times 1.2_{10}$ $10_{10}^{4-4} \times 1.2_{10}$ $10_{10}^{5-4} \times 1.2_{10}$ $10_{10}^{6-4} \times 1.2_{10}$ $10_{10}^{7-4} \times 1.2_{10}$ $10_{10}^{8-4} \times 1.2_{10}$ $10_{10}^{9-4} \times 1.2_{10}$

The significand's position gives a sense of precision. 0.000120000_{10} 00.0012000_{10} 000.012000_{10} 0000.120000_{10} 00001.20000_{10} 000012.0000_{10} 0000120.000_{10} 00001200.00_{10} 000012000.0_{10} 000012000.10

Extended Design Proposal: **1 Sign, 1 Biased Exponent Digit, 2 Significand Digits**

• With a position to store a sign, we can represent positive and negative values across a wide range, with a loss

• Under this design, values range between 0.00001 and 990,000! $^{\mbox{\tiny 19}}$

/unc/comp211 Systems Fundamentals

Binary Floating-Point Representations

© 2020 Kris Jordan All Rights Reserved

Proposal: Binary Floating Point with a Minifloat 1 Sign, 3 Biased Exponent Digits, 4 Significand Digits

• Sign: 0 for positive, 1 for negative

$$2^{E-B} \times C$$

- Bias: -3₁₀
- Implicit binary point (.) following first significand digit

• Convert the second number to decimal.

Modified Proposal: Implicit Leading 1. in Significand 1 Sign, 3 Biased Exponent Digits, 4 Significand Digits

- What is the most significant digit in a binary floating point always going to be? ...
- •1! So let's assume there's a leading 1 and get a *free bit* of precision!

Practice with the Modified Minifloat Proposal

Implicit Leading 1. in Significand

1 Sign, 3x - 3 Biased Exponent Digits, 4 Significand Digits

• What is the following minifloat bit pattern in decimal?

• How would you represent -4.25_{10} in minifloat?

 $\mathbf{\bullet}$

 $2_{10}^{E-3} \times C_2$

But wait, how do you represent 0 in this proposal?!?

Implicit Leading 1. in Significand

1 Sign, 3x - 3 Biased Exponent Digits, 4 Significand Digits

You can't represent 0!?! Is there really no such thing as a free bit?

Back to the drawing boards... What if we give up our *largest* and *smallest exponents* to be able to encode a few *special cases*?

- Old proposal: Exponent ranges from 2^{-3} to 2^{4}
- New proposal: Exponent ranges from 2^{-2} to 2^{3}
 - This frees up exponent bit patterns **000** and **111** for special cases!
- First special case: 000 in Exponent Field makes a Denormalized Value
 - This is a *denormalized value* and *has an implicit leading 0*. in its significand
 - Now we can represent 0! With: [0 000 0000]
 - The value of the exponent will be 1-bias (in our minifloat: 1-3: -2)
 - With the same minimum exponent but without the leading 1, we can represent values even closer to 0 than in normalized form.

Normalized vs. Denormalized Comparison

Normalized form:

Other Special Cases

- Three special cases can be encoded when the **exponent** is all **1**'s:
 - 1. +Infinity: [0 111 0000]
 0 sign bit, all 1s in exponent, all 0s in significand.

 - 3. NaN: [0 111 0001] ... [1 111 1111]
 - Not a Number: When *any* bit in the significand is not a 0.

IEEE 754 Floating Point

- Floating point standard established in 1985
 - Effectively all modern floating-point implementations use the standard!
- Floating point patterns are made of:
 - 1. leading sign-bit, followed by
 - 2. biased exponent bits followed by
 - 3. significand bits with an implicit leading 1.
 - Special cases when exponent field is all
 - 0's Denormalized implicit leading 0 in significand
 - 1's Special values +/- infinity, NaN
- Single-precision Floating Point: 32-bits
 - This is a **float** in C, Java, and so on
- Double-precision Floating Point: 64-bits
 - This is a double in C, Java, and so on

32-bit float		
Exponent Bits	8	
Bias	-127	
Significand Bits	23	

64-bit double		
Exponent Bits	11	
Bias	-1023	
Significand Bits	53	

Tools for Tinkering and Checking Understanding

- Best I've found: <u>https://float.exposed/</u>
- I would encourage challenging yourself to make conversions to and from *half-width* floating point precision:
- 1 Sign Bit
- 5 Exponent Bits, -15 Bias
- 10 Significand Bits

What do you need to know about floating point?

- You lose precision as your numbers grow away from 0
 - **double**'s maximum value is 1.8×10^{308} *next value is is* 2.0×10^{292} *away!*
 - **Takeaway**: If you are working with large numbers and precision matters:
 - Spend a lot more time on the numerical analysis of floating point appropriateness, or
 - Use an arbitrary precision arithmetic library (no loss in precision for loss in performance)

Many values cannot be represented without some round-off error:

- Examples: 1/3, 0.1_{10}
- This leads to surprising outcomes: 0.1 + 0.2 != 0.3
- Takeaway: If you are using relational operators (==, !=, >, <) with floating point values you should use a method for determining if they're *nearly equal*.
 - Naive intuition: abs(a b) < epsilon -- where epsilon is 0.0001 this fails in many edge cases!
 - If you're doing this, consult the internet and public documentation on best practices

• Floating point arithmetic is not associative:

- (a + b) + c does not always equal a + (b + c)
- When testing for exact equality this is nearly always a concern due to round-off
- When testing for *near equality* this can be a concern if the exponents of a, b, and c are very different from one another