/unc/comp211

Systems Fundamentals

Toward Floating Points
 Fractional Numbers!

© 2020 Kris Jordan All Rights Reserved

Refresher: Base 10 Decimals

What are each of the following values in Base10 decimal representation with a fixed number of possible digits?

1) $1 / 2$
2) $1 / 3$
3) $10 \frac{1}{4}$

How do you go from a ratio to a decimal?

- How were you taught how to convert $\frac{1}{2}$ to decimal positional notation 0.5 ?
- Think about how non-trivial of a leap this conversion is! Where did that 5-digit come from?!
- Long division! Convert the following rational numbers to decimals: $\frac{1}{8}, \frac{9}{11}$

$$
8 \overline{1} \quad 11 \overline{9}
$$

- Perform long division of $1 / 8$ and $11 / 9$ up to 4 significant digits.

Fractional/Positional Place Values in Base 10

Digits $=\{0,1,2,3,4,5,6,7,8,9\} \quad$ Negative place values are fractional.

Formalization of Fractional Values in Base-10

Suppose we define a Base10 number d, with $w+f$ place values, (w whole, f fractional) as a vector of decimal digits indexed from -f to w with an implicit decimal between d_{0} and d_{-1}.

$$
\vec{d}=\left[d_{w-1}, \ldots, d_{0}, d_{-1}, \ldots, d_{-f+1}, d_{-f}\right]
$$

We can determine the value of \vec{d} with the following summation:

FractionalValue $_{10}(\vec{d})=\sum_{i=-f}^{w-1} d_{i} \times 10^{i}$

A concrete example:

$$
\begin{array}{lll}
w=2 & d_{1}=1 \\
f=2 & \text { thus } & d_{0}=0 \\
\vec{d}=[1,0,2,5] & d_{-1}=2 \\
d_{-2}=5
\end{array}
$$

$$
F V_{10}([1,0,2,5])=\sum_{i=-f}^{w-1} d_{i} \times 10^{i}
$$

Fractional/Positional Place Values in Base 2

Digits $=\{0,1\}$
Negative place values are fractional.

Practice: Convert 1010.1010_{2} to rational and positional representations.

How do you go from base-2 ratio to base- 2 decimal? And base-10 representation?

- Ratio-to-Decimal: Long division! Work out the long division below.
- Write out your numbers in base-2 even if you're "thinking" in base-10.

$$
\frac{\mathbf{1}_{2}}{\mathbf{1 0 0}_{2}}
$$

$100_{2} \overline{1_{2}}$
$11_{2} \overline{1_{2}}$

/unc/comp211

Systems Fundamentals

Toward Binary Floating Points
 Decimal Floating Points!

© 2020 Kris Jordan All Rights Reserved

Refresher: Base 10 Decimals

What are each of the following values in Base10 decimal representation with a fixed number of possible digits?

1) 1.10×10^{2}
2) $2.11 \mathrm{E}-1$

How can we best use a fixed number of digit positions to represent a wide range of fractional values?

Design Challenge: Representing Fractional Values w/ a Finite \# of Digits

- Consider the following formula: $\boldsymbol{x}=\mathbf{1 0}^{E} \times C$
- The digits of E make up the exponent (aka order of magnitude)
- The digits of C make up the significand (aka coefficient or mantissa)
- Assume there is an implicit decimal point after the first digit of C!

- You have 3 positions to store base-10 digits 0-9 in order to represent any \boldsymbol{x}

1. How many of the 3 positions would you allocate for E ? To C ?

- What is the largest value you can represent with your decision? The smallest?
- What are the fundamental trade-offs in allocating positions to E vs. C?

2. How would you represent negative Es without a negative symbol?

- With negative Es you can represent fractional values $\mathbf{0}<\boldsymbol{x}<\mathbf{1}$

Design Proposal: 0 Exponent Digits, 3 Significand Digits

Smallest Non-zero Value

0.01_{10}
0.01_{10}

Largest Value

9.99_{10}
9.9910

- Under this design, we can represent values between 0.01 and 9.99.

Design Evaluation - Precision

- Consider precision in terms of the "next closest" value you can represent to any number.
- From the smallest non-zero value it would be the next largest value
- From the largest value it would be the next smallest value
- Notice in this design we have a consistent precision throughout the entire range of values we can represent. The next closest value to any value in our range is always 0.01 away.

Design Proposal: 1 Exponent Digit, 2 Significand Digits

Smallest Non-zero Value

$10_{10}^{0} \times 0.1_{10}$ 0. 1_{10}

Largest Value

$10_{10}^{9} \times{ }^{9} .9_{10}$
$9,900,000,000_{10}$

- Under this design, values range between 0.1 and 9.9 billion!

Design Evaluation - Precision

Exponent Digits Buy You Range at the Cost of Precision

- Notice that you have dramatically lower precision as the exponent increases!
- There's also a significant imbalance between being able to represent $0<x<1$ and $1<x<m a x$. If we could represent negative exponents it would help!

Modified Design Proposal:

1 Biased Exponent Digit, 2 Significand Digits

- Let's bias our exponent by $=4$
- Take our exponent and subtract 4 from it so that our biased \mathbf{E} range is -4 to 5 .
- Note: The -4 bias is itself a design decision with trade-offs. It could have been any number.

$$
\begin{gathered}
\left\lvert\, \begin{array}{|c|c|c|}
\hline \text { Smalest Vaue } \\
\hline 0 \mid & 1 \\
\mathbf{1 0}_{\mathbf{1 0}}^{0-4} \times \mathbf{0 . 1}_{\mathbf{1 0}} \\
\mathbf{1 0}_{\mathbf{1 0}}^{-4} \times \mathbf{0 . 1}_{\mathbf{1 0}} \\
\mathbf{0 . 0 0 0 0 1}
\end{array}\right.
\end{gathered}
$$

- PollEv.com/compunc - what is the value of $[2,1,1]$ in this proposal?
"Floating Point"

0	1	2
1	1	2
2	1	2
3	1	2
4	1	2
5	1	2
6	1	2
7	1	2
8	1	2
9	1	2

$10_{10}^{0-4} \times 1.2_{10}$
$10_{10}^{1-4} \times 1.2_{10}$
$10_{10}^{2-4} \times 1.2_{10}$
$10_{10}^{3-4} \times 1.2_{10}$
$10_{10}^{4-4} \times 1.2_{10}$
$10_{10}^{5-4} \times 1.2_{10}$
$10_{10}^{6-4} \times 1.2_{10}$
$10_{10}^{7-4} \times 1.2_{10}$
$10_{10}^{8-4} \times 1.2_{10}$
$10_{10}^{9-4} \times 1.2_{10}$
0.000120000_{10} 00.00120000_{10} 000.0120000_{10} 0000.120000 10 00001.20000 10 000012.0000_{10} 0000120.000_{10} 00001200.0010 000012000.0 $\mathbf{0}_{10}$ $0000120000 \cdot 10$

Extended Design Proposal:

1 Sign, 1 Biased Exponent Digit, 2 Significand Digits

- With a position to store a sign, we can represent positive and negative values across a wide range, with a loss

Smallest Negative Value

Largest Negative Value

Smallest Positive Value

Largest Positive Value

$+990,000_{10}$

- Under this design, values range between 0.00001 and 990,000!

/unc/comp211
 Systems Fundamentals

Binary Floating-Point Representations !

Proposal: Binary Floating Point with a Minifloat 1 Sign, 3 Biased Exponent Digits, 4 Significand Digits

- Sign: 0 for positive, 1 for negative

$$
\mathbf{2}^{E-B} \times C
$$

- Bias: -3_{10}
- Implicit binary point (.) following first significand digit

- Convert the second number to decimal.

Modified Proposal: Implicit Leading 1. in Significand 1 Sign, 3 Biased Exponent Digits, 4 Significand Digits

- What is the most significant digit in a binary floating point always going to be? ...
- 1! So let's assume there's a leading 1 and get a free bit of precision!

Practice with the Modified Minifloat Proposal
Implicit Leading 1. in Significand
1 Sign, 3x-3 Biased Exponent Digits, 4 Significand Digits
-What is the following minifloat bit pattern in decimal?

- How would you represent -4.25_{10} in minifloat?

But wait, how do you represent 0 in this proposal?!?

Implicit Leading 1. in Significand
1 Sign, 3x-3 Biased Exponent Digits, 4 Significand Digits

You can't represent 0!?! Is there really no such thing as a free bit?

Back to the drawing boards...

What if we give up our largest and smallest exponents to be able to encode a few special cases?

- Old proposal: Exponent ranges from 2^{-3} to 2^{4}
- New proposal: Exponent ranges from 2^{-2} to 2^{3}
- This frees up exponent bit patterns 000 and 111 for special cases!
- First special case: 000 in Exponent Field makes a Denormalized Value
- This is a denormalized value and has an implicit leading 0 . in its significand
- Now we can represent 0! With: [0 000 0000]
- The value of the exponent will be 1-bias (in our minifloat: 1-3: -2)
- With the same minimum exponent but without the leading 1, we can represent values even closer to 0 than in normalized form.

Normalized vs. Denormalized Comparison

Normalized form:

0	0	0	1	0	0	0	1
$\mathbf{2}_{10}^{1-3} \times \mathbf{1 . 0 0 0 1}$							

> You can tell this is normalized because not all 0's and not all 1's in exponent bits.

Denormalized form:

> Notice denormalized has the same exponent as the smallest possible normalized exponent.

Other Special Cases

- Three special cases can be encoded when the exponent is all 1 's:

1. +Infinity: [0 111 0000]

- 0 sign bit, all 1 s in exponent, all 0 s in significand.

2. -Infinity: [1 111 0000]

- 1 sign bit, all 1 s in exponent, all 0 s in significand.

3. NaN: [0 111 0001] ... [11111111]

- Not a Number: When any bit in the significand is not a 0 .

IEEE 754 Floating Point

- Floating point standard established in 1985
- Effectively all modern floating-point implementations use the standard!
- Floating point patterns are made of:

1. leading sign-bit, followed by
2. biased exponent bits followed by
3. significand bits with an implicit leading 1.

32-bit float	
Exponent Bits	8
Bias	-127
Significand Bits	23

- Special cases when exponent field is all
- 0's - Denormalized - implicit leading 0 in significand
- 1's - Special values - +/- infinity, NaN
- Single-precision Floating Point: 32-bits
- This is a float in C, Java, and so on

64-bit double	
Exponent Bits	11
Bias	-1023
Significand Bits	53

- Double-precision Floating Point: 64-bits
- This is a double in C, Java, and so on

Tools for Tinkering and Checking Understanding

- Best l've found: https://float.exposed/
- I would encourage challenging yourself to make conversions to and from half-width floating point precision:
- 1 Sign Bit
- 5 Exponent Bits, -15 Bias
- 10 Significand Bits

What do you need to know about floating point?

- You lose precision as your numbers grow away from 0
- double's maximum value is 1.8×10^{308} - next value is is 2.0×10^{292} away!
- Takeaway: If you are working with large numbers and precision matters:
- Spend a lot more time on the numerical analysis of floating point appropriateness, or
- Use an arbitrary precision arithmetic library (no loss in precision for loss in performance)
- Many values cannot be represented without some round-off error:
- Examples: $1 / 3,0.1_{10}$
- This leads to surprising outcomes: $0.1+0.2$!= 0.3
- Takeaway: If you are using relational operators ($==,!=,>,<)$ with floating point values you should use a method for determining if they're nearly equal.
- Naive intuition: abs(a-b) < epsilon -- where epsilon is 0.0001 this fails in many edge cases!
- If you're doing this, consult the internet and public documentation on best practices
- Floating point arithmetic is not associative:
- $(\mathrm{a}+\mathrm{b})+\mathrm{c}$ does not always equal $\mathrm{a}+(\mathrm{b}+\mathrm{c})$
- When testing for exact equality this is nearly always a concern due to round-off
- When testing for near equality this can be a concern if the exponents of a, b, and c are very different from one another

