

2

Environment & Args

Stack

Heap

(Dynamic Memory)

Uninitialized Data

(Static Memory)

Initialized Data

(Static Memory)

Text

(program instructions)

High Address

Low Address

main

Frame 1

Frame N

...

Grows

Down

Grows

Up

Unexplored

Unexplored

• A process is a program amid execution
• Many processes can run the same program code

• Each process' memory is isolated* from others'

• This isolation is provided and enforced by the operating system and

hardware. Trying to read or write to segments of memory you aren't

allowed leads to a segmentation fault (program crash).

• The operating system (OS) gives each process the illusion of having a vast,

contiguous memory address space through virtual memory

• Virtual memory is an important topic taught in the OS course. In this course we will

embrace the abstraction of virtual memory!

• A key characteristic of a systems language is it gives you more

direct access to memory-level concerns and capabilities.

• With great power comes great responsibility!

* Processes can intentionally share memory if they want to (shared memory also an OS subject)

Like in an adventure game

where the map isn't revealed

until you reach certain areas,

this is how we'll explore the

organization of memory!

3

Environment & Args

Stack

Heap

(Dynamic Memory)

Uninitialized Data

(Static Memory)

Initialized Data

(Static Memory)

Text

(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows

Down

Grows

Up

Unexplored

• Variables local to function calls are typically* found in the
"Stack" or function call stack

• Each function call has a frame on the stack.
• This enables separation of storage between functions. Useful for

separating concerns between and limiting knowledge between
functions. Critical for generalized recursion.

• Frames not only contains variable's values, but also:
• Argument values
• Return Address

• Where in the program to resume execution once a function returns

• Return Value
• Space where return value is shared between caller and callee

• Additional CPU State*

* In 311 you will learn about CPU registers which can also be used by the compiler to
store the contents of a variable directly in a CPU's limited storage locations rather than in
the virtual memory system.

Unexplored

• The C programming language has an "address of" operator

which evaluates to the address of its operand in memory.

• A memory address depends on the word size of a computer. On your

64-bit laptop the word size is 64 bits. Think of it as a (very large!)

unsigned integer.

• To print a memory address with printf, use the %p format

specifier

• The p stands for pointer, which is a name for a memory address value

• Consider the output right:

• Notice how enormous these hex values are! As an unsigned integer

&b is 140,736,771,505,430

• Also notice since a char is a single byte, the addresses of a and b are

right beside one another.

• Takeaway: The stack is in high memory addresses. Local

variables are collocated within their stack frame. 4

1 #include <stdio.h>
2
3 int main()
4 {
5 char a = 'a';
6 char b = 'b';
7
8 printf("&a: %p\n", &a);
9 printf("&b: %p\n", &b);
10 }

Consider the following code...

&a: 0x7fffd545bd16
&b: 0x7fffd545bd17

... and it's output:

5

?

6

Address Contents2 Contents16 Contents10

Address Contents2 Contents16 Contents10

a

b

a

b

• Notice that the type of a
variable establishes its bit-
width in memory.

• Variables whose types are
larger than 1-byte span multiple
addresses in memory!
• We will assume "little endian"

meaning when a value spans
multiple addresses, its low-order
bits will be in the low-address
end of the range.

• Reminder: variable names are
for humans only! The compiler
does the bookkeeping to
produce machine programs
that operate in terms of
memory addresses with no
memory representation of
variable names.

• Running any of the previous programs results in different
output every single execution. Why?

• The operating system intentionally randomizes the starting
address of the call stack every time a program runs
• ASLR - Address Space Layout Randomization

• Why? Hacking programs becomes more difficult when the
exact addresses of data have some randomness.

• Notice it's not all random, though. The high-order bits keep the
stack starting in the same general vicinity of addresses:
• 1.406e14 through 1.407e14

• Full precision: 140,668,768,878,592 through 140,737,488,355,327

7

9

• In systems programming languages pointers are a first-class data type

• Can be stored in variables, passed as parameters, returned from functions

• You can dereference a pointer to read that memory address's contents

• What is the point of pointers? Why haven't you needed them before?

• It turns out you have needed them before.

• Java: Reference types (arrays, objects) are opaque pointers to heap values.

• In "memory managed" languages you have limited control of and visibility into pointers, but they're very much there!

• Big Idea: Pointers enable sharing data structures between function calls without having to copy the structure

• It would be expensive to copy large data structures as arguments to a function call only to have to copy it back to the caller's frame

• Keep this in mind because our early demos will show pointers to simple, primitive values for illustrative purposes

• Other use cases: Many!

• Efficient iteration through arrays.

• Sorting strings and objects without having to move their values in memory.

• Dynamic dispatch of functions.

11

12

• Declaring a pointer variable:

• Example:

• Assigning the address of a variable to a pointer:

• Access the pointer's value

• Read from the memory address referenced by a pointer - dereference read

• Write to the memory address referenced by a pointer - dereference write

13

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

7ffe5fe18d1

Address Contents2 Contents16

a
_
c
h

a
r

a
_

c
h

a
r_

p
tr

• Since 64-bit memory addresses are
themselves 64-bits wide, to store an
address in a pointer requires 8
bytes as shown for a_char_ptr
• Aside: On today's processors only 48-bits of the

possible 64 bits are used. Why? 48-bits can
address up to 256 Terabytes of memory. That's
16,000+ times more memory than your laptop
has. In the future those top 16-bits can be used.
That's why those bytes are grayed out.

• BIG IDEA: The address of a_char
is what is stored in the contents of
a_char_ptr!

15

• Parameters can be pointers
• In doing so, it gives functions the ability to read from and to memory addresses they otherwise

would not have access to.

• Previous ex modified 's local variable... from outside its scope!
• If this sentence doesn't scare you a bit, keep reading it until you're scared.

• You have kind of seen this before in Java / Python / TypeScript when you have
parameters of type array or object (reference types)
• In those cases what you're actually passing are pointers to the same array/object

• However, in these languages it is impossible to pass pointers to primitive locals. No such restrictions
exist in systems languages like C because you are working more transparently at the memory
address level.

• We will see this is commonly done when writing "object-oriented style" C

16

17

?

?

• You can perform (limited) arithmetic on pointers and addresses
• You can add and subtract integers from pointers

• You can subtract two pointers of the same type

• Most useful when working with pointers to array elements
• Sometimes for hackier reasons

• The actual byte arithmetic is contextual to the pointer's type
• If you were adding one to the address to a uint32_t variable, such as

&a_uint32 + 1, the result would increase the address by 4 bytes!

• Implicitly, the number being added or subtracted from the pointer is being
scaled by the type's byte width.

19

• An array variable in C is a special pointer to address of first element
• Different than a plain pointer because it cannot be reassigned

• Also different because sizeof(array) reports size in bytes of complete array

• Array indexing notation is just syntactic sugar for pointer arithmetic:
• is the same as

• is the same as and the same as

• Since an array's name is just a pointer to its first element, you can assign it
directly to a pointer of the same element type:

20

