

• C arrays are quite different from memory-managed languages

• In C, arrays:

1. Are a notation to allocate a contiguous span of memory whose
size is # elements * byte width of type of each element

• Ex: char[10] is 10 bytes, int16_t[10] is 20 bytes

• The sizeof(array) operator returns array's total size in bytes

2. Are just a name that for the address of the array's first element

3. Cannot really be used as function parameters***

• ***But you can have pointer function parameters to hand-off the address
of an element in an array.

• Unlike in Java, Python, and JavaScript

• Local C arrays allocate space in a function's stack frame!

• You are always referencing the address of a specific element. In
Java/Python/JavaScript arrays you have a reference to the "object"
not a specific element within it.

• You cannot reassign an array name after initialization.

Consider the following:

Output:

• C Arrays and Pointers are closely related...
...but not the same!

• An array's name is an identifier that
evaluates to the address of its first element
• Not a variable. Cannot be reassigned!

• You can think of it as a special, restricted case
of a pointer.

• A pointer is a variable that holds the
address of another value
• Since it is a true variable, a pointer can be

reassigned.

• Given array a, the following expressions are equivalent for
computing the address of array element i:

• Given array a, the following expressions are equivalent for
reading the value of array element i:

• Two different points of view to access the same underlying data
model!

• Address arithmetic/dereferencing transparently reveals memory
organization.

• Indexing gives affordance of array abstraction focused on element
values.

• The sizeof operator returns the number of bytes of its operand.
• sizeof is an operator, not a function!
• This gives it a superpower a function could not achieve: a type name is a valid operand, e.g. sizeof(int)

• The return type of sizeof is size_t
• A size_t's width in memory is machine dependent, just like pointers (same width as pointers).
• Guaranteed to be large enough to hold the size of the biggest "object" a system can handle.

• "Object" in C context just means a value held in memory, not an "Object" in the object-oriented programming use.

• To print a size_t value, use format specifier %lu (long unsigned)

• Common technique to compute "length" of an array of type T:

5

6

• Common to use a pointer into an array as a
cursor to iterate through elements

• With strings you have a sentinel value (ending
mark) in the null termination character

• Otherwise, you need to know how many times to
iterate as in the example right. Pay specific
attention to lines 18 - 20.

• That you cannot pass an array with its length
directly, since you can only pass an address to
an element in an array, is the source of much
confusion coming from higher-level languages!

• Stopping after line 13, draw a memory diagram of a, b, c, words, word_ptr. You can use
pictorial arrows to represent addresses.

• Questions for Understanding:
• 1) what is sizeof(words)?
• 2) What is the last line of output?

7

8

a \0

b i g \0

c a k e \0

&words[0]

&a[0] &b[0] &c[0]

a

b

c

words

word_ptr

• Notice words' type is an array of char pointers.
• Similar concept to String[] in Java!

main

0x..00

0x..02

0x..06

0x..0B 0x..13 0x..1B

0x..23

