
/unc/comp211

Systems Fundamentals

A Process'

Arguments and
Environment Variables

© 2020 Kris Jordan All Rights Reserved

2

Environment & Args

Stack

Heap

(Dynamic Memory)

Uninitialized Data

(Static Memory)

Initialized Data

(Static Memory)

Text

(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows

Down

Grows

Up

What lies North of the wall
(read: stack) in a process' memory?

Bitter Cold Territory

• Let's go on a perilous adventure!

• We'll establish a "hero" (read: pointer),

walk it "north" one byte at a time, and print

each byte as we reach it.

• Create a file named adventure.c in

vim

• Its contents are shown right.

• Compile & run it:

$ gcc -o adventure adventure.c

$./adventure wildlings giants

• Do you see anything interesting in the

output?

• Hint: look for "./adventure" "wildlings" and

"giants"!
• Once you're getting a "Segmentation fault"

you've reached the edge of the world.

Unexplored Territory

You generally shouldn't do things like this

in a program. This is a hacky

demonstration of how wild it is to have

direct access to a process' memory.

3

Arguments & Environment

Stack

Heap

(Dynamic Memory)

Uninitialized Data

(Static Memory)

Initialized Data

(Static Memory)

Text

(program instructions)

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows

Down

Grows

Up

The Arguments and Environment Variables
a Program is Executed With

• When you run a program, data provided by the user from

outside the program is loaded into the process' memory.

• These values are used as inputs and context to the program.

1. Argument Values

$./adventure wildlings giants

• The name/path of the program and any arguments.

2. Environment Variables

• These variables are often used for configuration purposes and

managed by your command-line interface shell

• You setup environment variables without knowing:

GIT_AUTHOR_NAME

• The printenv program will dump your environment variables

Unexplored Territory

Program Arguments (1 / 4)

• When you execute a program, the shell reads your command as character
data and breaks it up into argument tokens:
• 0 - The 0th token is conventionally the name/path of the program

• 1...N - The 1st through Nth tokens

• Pointers to each of these values are added to an array of char pointers
• argv is the conventional name of this array, short for "argument values" 4

a \0 b i g \0 c a k e \0. / a r g s \0

\0

argv

Program Arguments (2 / 4)
• The shell tells the operating system to execute the program

• This happens via a system function call

• The operating system "function" call is given a pointer to argv
• Technically this array must be null terminated, but we're not illustrating that here.

5

a \0 b i g \0 c a k e \0. / a r g s \0

argv

6

Arguments & Environment

Stack

Heap

(Dynamic Memory)

Uninitialized Data

(Static Memory)

Initialized Data

(Static Memory)

Text

(program instructions)

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows

Down

Grows

Up

Unexplored Territory

Program Arguments (3 / 4)

• Before your program enters the main function, as the
operating system sets up memory for the process, it
copies argv and the char[] data it points to from the
shell's memory into the process' memory.
• Where? Higher than the call stack.

• You explored this area in the opening example!

• In C, when you write a main function with the params:
int argc, char *argv[]
• The count of argument pointers is assigned to argc

• A pointer to the array of pointers to char[] arguments is
assigned to argv

• This is how you can access command-line arguments!

Program Arguments (4 / 4)

• Let's try writing a simple program to print command-line args together.

• Source code: args.c

• Compile: gcc -o args args.c

• Run: ./args a big cake

• Rather than using indexing notation with the argv pointer, try using array
arithmetic and dereferencing, instead!

Aside: About Java's main method...

• Remember writing the following method signature?...

class Foo {

public static void main(String[] args) { /* ... */ }

}

• What was up with String[] args? The same concept!

• When you run a Java program from the command-line, the char[] values you give as

arguments to the shell ultimately are copied into the String[] args of your main function.

• Every general-purpose programming language has a straightforward way of reading

command-line arguments along these lines!

8

Environment Variables (1 / 3)
• Your shell session maintains a set of named Environment Variables

• Example: the PWD variable is the path to your working directory

• You can use environment variables from the shell: echo PWD is ${PWD}

• The purpose of environment variables is to provide context to programs
• You established your git author and email address via environment variables in an earlier

lecture. You can try printing it out: echo ${GIT_AUTHOR_NAME}

• Environment variables are used commonly in industry
• Development: to configure API keys to services you're using such as AWS
• Production: to manage application configuration in server programs

• Later this semester we'll spend more time on shell variables, for now:
• How does a program access environment variables?

9

Environment Variables (2 / 3)

• Just like arguments, environment variables can be accessed through a
conventional parameter in the main function.

• Also just like arguments, "the environment" is given to you as a pointer
to an array of char[] pointers, conventionally named envp.
• Like argv, the array of environment variable pointers is null terminated.
• Unlike argv, you are not given a count parameter like argc.

10

Environment Variables (3 / 3)
• The program printenv is a standard system utility

• Usage:

$ printenv # prints all name/value pairs

$ printenv PWD # prints the value assigned to PWD variable

$ printenv PWD GIT_AUTHOR_NAME # prints both values on separate lines

• The next problem set will be a short, naive implementation of printenv using
pointer arithmetic only.

11

NAME printenv - print all or part of environment

SYNOPSIS printenv [OPTION]... [VARIABLE]...

DESCRIPTION
Print the values of the specified environment VARIABLE(s).
If no VARIABLE is specified, print name and value pairs for them all.

