


• Two questions to assess the lifetime of a memory address:
• When is it safe to access or "read"?
• When does it expire?
• Both answers depend on how the memory is allocated and deallocated!

• Local variables are "automatic" variables in C
• Their space is automatically allocated/deallocated on function 

call/return

• The lifetime of a memory address of an automatic/local/stack variable is:
• Safe after initialization.
• Expired once out of scope.

2



• In C, you can read memory addresses both before it is safe to and after they expire.
• Very lucky: the compiler will emit warnings.
• Somewhat lucky: the program will crash quickly and predictably.
• Unlucky: program may not crash for days, months, years or predictably.
• C is not a memory safe language.

• Languages like Java, TypeScript, Python are memory safe.

• When you access memory via a variable in a memory safe language you have some guarantees:
1. If it's valid, you'll read the contents back directly.
2. If it's invalid (null pointer, index out of bounds) an exception is always raised.

• There are trade-offs to achieve memory safety:
• For memory-managed languages like Java, you can't pass references to stack values, your heap must be 

garbage collected, overhead in array access, etc. Generally less optimal in both time and space.
• For modern systems languages like Rust, the trade-off is additional syntax for communicating lifetime 

guarantees to the compiler so that it can prove all memory accesses are valid.

3



4

1. Does it compile?
2. Does it run?
3. What is its output?

YIKES!
Always initialize 
before Access!!!

This is quite scary!

Only with warnings does it give you a warning 
you're accessing an uninitialized value. It still 
compiles! It still runs! The value is trash!



5

1. Does it compile?
2. Does it run?
3. What is its output?

Danger! Never 
return pointer to 

a stack value.

YIKES

This is quite scary!

Even with warnings the warning generated isn't about the 
fundamental issue here and ultimately it runs. But this is fully 
insane and pathological.



6

1. Does it compile?
2. Does it run?
3. Output of line 20?

YIKES

This is quite scary!

No warnings emitted! What's the fundamental issue 
here? We're assigning the address of i to the pointer p, 
whose lifetime exceeds i's.

After a memory address' lifetime expires, the system is free 
(and wise!) to reuse that memory for other purposes, as you 
see happening here.

Danger! Lifetime 
of p is greater 

than i.



7

1. What is the lifetime of a, the 
variable declared on on line 18?

2. What is the lifetime of x, the 
variable declared on line 20?

3. What is the lifetime of i, the 
variable declared on line 8?

Never valid! No lifetime 
because never initialized!

Lifetime of x begins on line 20 and 
expires upon return at line 22.

Lifetime of i's memory ends 
at close of block on line 12.



8

1. What is the lifetime of a, the 
variable declared on on line 18?

2. What is the lifetime of x, the 
variable declared on line 20?

3. What is the lifetime of i, the 
variable declared on line 8?

Undefined behavior reading a's 
memory outside lifetime!

x's memory's lifetime was only 
valid in this range.

i's memory's lifetime was only 
valid in this range.

But x's address was returned by 
foo and later dereferenced here!

But i's address was assigned to p 
and later accessed!


