


• The process of executing your program's code has many stages

• Compile Time - When a compiler takes source code as input and converts it 
to a more primitive representation closer to machine instructions.
• This occurs when you run gcc or javac

• Runtime - When your compiled program is executed by the processor.
• This is your program "in motion"
• This occurs when you run a.out or whatever you've named your executable

• There are additional stages we'll introduce later, as well.

2



• Whether a function is called can be controlled by side-effects (files, events)
• Input side-effects are unknown until runtime!

• A call to a function can occur from anywhere, thus from any stack depth
• Automatic variable locations depend on the depth of call stack
• Example: Consider printf being called from both main and a subroutine function, printf's

automatic variable's addresses will be different for the two calls.

• There can be multiple instances of a single automatic variable
• This must be true for recursion to work!

• The address of automatic variables is only generally decidable at runtime.
3



4



• Static analysis of your code is typically performed at compile time.
• Type checking - do you have type errors?
• Warning checks - examples: 

• variable use before initialization
• function calls before declaration
• unused variables
• code paths in functions that do not return a value

• Static implies "at rest" and usually decidable at compile time.
• Static memory is reserved for singleton variables and values whose 

addresses are "at rest" at runtime and, thus, are decided* at compile time.
• * Due to address space layout randomization, the static memory offset is decided at compile time, but the exact 

location of the segment is randomized within a range at runtime for security purposes.

5



• Let's explore static addresses 
a little more closely...

6



7

Environment & Args

Stack

Heap
(Dynamic Memory)

Uninitialized Data
(Static Memory)

Initialized Data
(Static Memory)

Text
(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows 
Down

Grows 
Up

• Static and global variables are allocated in 
the static memory segment of a process

• Those whose initialized values that are non-
zero are allocated in the initialized data area
• Values are copied in from the compiled program

• Those whose values are uninitialized, or 
initialized to zero, are allocated in the 
uninitialized data area and zeroed out.

Unexplored Territory

Unexplored Territory

New 
Segment



• Lifetime: When is a memory address safe for reading? When expired?

• For automatic/local/stack variables lifetime is closely related to scope
• Safe after initialization, expired once out of scope.

• For static variables, lifetime is unrelated to scope.
• All static memory is initialized (either with values or 0s) before your main function is called.
• The lifetime of static memory is the entire duration of a process!
• But its scope can be global, static global, or static local and only valid after declaration!

• Extremely Important concept to understand in systems programming.

8



9

• a is a char array allocated in text's 
frame on the stack

• b is a pointer to a string constant 
allocated in read-only static 
memory (more on this next)

• b's address is also in text's frame



const char * pointers 
• When you initialize a char array with a string literal the contents are copied into each frame 

at the point of initialization.

• When you initialize a char * with a string literal, the char[] contents are stored in read-only 
static memory, not in the frame.

• Why the difference? An optimization. It's common you do not need to modify string literal 
contents at runtime, so it's a waste to copy them fresh in each frame. Storing the char[] in 
static memory and just initializing a pointer to it is more efficient.

• PSA: IF YOU INITIALIZE A char * WITH A STRING LITERAL 
ALWAYS DECLARE IT const char *
• That you don't have to, without warnings, is a historical artifact.
• If you attempt to write to read-only static memory you will get a segfault.
• Declaring as const will give you appropriate errors at compile time if you attempt to write to its 

contents.
10



11

Memory Segment Safe After Expires When Runtime Dangers
(Things that will (hopefully!) crash your program.)

Call Stack
• automatic variables 
• parameters

Initialization Function Call Returns
1. Returning or sharing address of 

automatic variable outside its 
scope.

Static Memory
• static variables
• global variables

Always*
(Uninitialized variables 
are zeroed.)

Never

1. Writing to read-only static memory.
2. Unintended conflicting writes from 

many places (grave concern in 
multithreaded programs).

Heap Memory
• "dynamic" memory

malloc and initialization
calloc free'd

1. Out of memory
2. Use before initialization
3. Writes overflowing allocated space
4. Failing to free (memory leak)
5. Use after free
6. Double free


