/unc/comp211

Static Memory &
Static Lifetimes/

© 2020 Kris Jordan All Rights Reserved



Compile Time vs. Runtime

» The process of executing your program'’s code has many stages

» Compile Time - When a compiler takes source code as input and converts it
to a more primitive representation closer to machine instructions.

 This occurs when you run gcc or javac

* Runtime - When your compiled program is executed by the processor.
 This is your program "in motion"
 This occurs when you run a.out or whatever you've hamed your executable

« There are additional stages we'll introduce later, as well.



Automatic Variables and the Call Stack

« Whether a function is called can be controlled by side-effects (files, events)
* Input side-effects are unknown until runtime!

« A call to a function can occur from anywhere, thus from any stack depth
« Automatic variable locations depend on the depth of call stack

« Example: Consider printf being called from both main and a subroutine function, printf's
automatic variable's addresses will be different for the two calls.

« There can be multiple instances of a single automatic variable
 This must be true for recursion to work!

» The address of automatic variables is only generally decidable at runtime.



What is the output?

#include <stdio.h>
int counter();

int main()

{
printf("%d\n", counter());
printf("%d\n", counter());

printf("%d\n", counter());

}

int counter()

{

static int count = ©;
++count;




Static Analysis

» Static analysis of your code is typically performed at compile time.
» Type checking - do you have type errors?

« Warning checks - examples:
« variable use before initialization
« function calls before declaration
 unused variables
» code paths in functions that do not return a value

» Static implies "at rest” and usually decidable at compile time.

- Static memory is reserved for singleton variables and values whose

addresses are "at rest” at runtime and, thus, are decided* at compile time.

« *Due to address space layout randomization, the static memory offset is decided at compile time, but the exact
location of the segment is randomized within a range at runtime for security purposes.



Declaration Demonstration and Notes

» Let's explore static addresses
a little more closely...

char global = 1;

static char static_global = 2;

int main()

{

static char static_local = 3;

char automatic = 4;

printf(“"&global: %p\n", &global);
printf(“&static_global: %p\n", &static_global);
printf(“"&static _local: %p\n", &static_local);
printf(“&automatic: %p\n", &automatic);




. /
High Address Environment & Args

Static Memory

Stack

main - Frame 0

» Static and global variables are allocated in
the static memory segment of a process

Function Call - Frame 1

Function Call - Frame N

« Those whose initialized values that are non-
zero are allocated in the initialized data area

 Values are copied in from the compiled program

« Those whose values are uninitialized, or Unexplored Territory

initialized to zero, are allocated in the New ngr;;ﬁf';;:fn'gfta
y)
uninitialized data area and zeroed out. Segment

Initialized Data
(Static Memory)

Low Address —__ Unexplored Territory




Lifetime IS NOT Scope

» Lifetime: When is a memory address safe for reading? When expired?

» For automatic/local/stack variables lifetime is closely related to scope
 Safe after initialization, expired once out of scope.

 For static variables, lifetime is unrelated to scope.
« All static memory is initialized (either with values or 0s) before your main function is called.
« The lifetime of static memory is the entire duration of a process!
« But its scope can be global, static global, or static local and only valid after declaration!

- Extremely Important concept to understand in systems programming.




Sketch how you think the program looks in memory at line 7...

Binclude <stdio.h> * ais a char array allocated in text's

frame on the stack

int main()

{

char a[] = "a"; * b is a pointer to a string constant

char xb = "b"; . .
orintf("a: %p\n", a); allocated in read-only static

printf("b: %p\n", b); memory (more on this next)
printf("&b: %p\n", &b);

e b's address is also in text's frame



const char * pointers to String Literals

« When you initialize a char array with a string literal the contents are copied into each frame
at the point of initialization.

« When you initialize a char * with a string literal, the char[] contents are stored in read-only
static memory, not in the frame.

- Why the difference? An optimization. It's common you do not need to modify strin%liter_al
contents at runtime, so it's a waste to copy them frésh in each frame. Storing the charl] in
static memory and just initializing a pointer to it is more efficient.

» PSA: IF YOU INITIALIZE A char * WITH A STRING LITERAL char *b = "b";
ALWAYS DECLARE IT const char *

« That you don't have to, without warnings, is a historical artifact. const char *c = "c";
- If you attempt to write to read-only static memory you will get a segfault.

. Dec{ari{lg as const will give you appropriate errors at compile time if you attempt to write to its
contents.

10



Lifetimes

Memory Segment Safe After m ~ Runtime Dangers
(Things that will (hopefully!) crash your program.)

Call Stack . Returning or sharing address of
« automatic variables Initialization Function Call Returns automatic variable outside its
« parameters scope.

. Writing to read-only static memory.

Static Memor * : . )

. Ty Always _ . Unintended conflicting writes from
 static variables (Uninitialized variables Never many places (grave concern in
« global variables are zeroed.) y 9

multithreaded programs).




