


2

Environment & Args

Stack

Heap
(Dynamic Memory)

Static Memory

Text
(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows 
Down

Grows 
Up

• Stack memory is automatically allocated and freed by function calls and 
returns.

• The compiler produces the code to control the stack pointer to push a stack frame, 
arrange automatic variables (and other state) within the frame, and pop it once the 
call returns.

• Stack memory has useful qualities:
• Automatically setup and cleaned up for you!
• Frames containing parameters and local variables provide a working space for 

functions to do their jobs with some degree of isolation from other functions' 
values.

• Stack memory also has downsides:
• Lifetime spans duration of a function call (often very short!)
• Can't pass arrays by copy (pointers are passed) nor return them because copying 

arrays is an expensive (in both time and space) task.

Unexplored Territory

Unexplored Territory



3

Environment & Args

Stack

Heap
(Dynamic Memory)

Text
(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows 
Down

Grows 
Up

• Static memory is fixed in size when the program is compiled.

• Static memory has useful qualities:
• Lifetime spans duration of running program
• If your program is running you know there was enough static 

memory to run it
• Efficient because the allocation happens once

• Static memory also has limitations:
• For a program to handle a range of dataset sizes you must reserve 

enough to fit maximum (wasteful in most cases)
• Machines have various amounts of memory and more as time 

passes on, you can't know how much until runtime because the 
same program can be installed on many machines!

Unexplored Territory

Unexplored Territory

Static Memory



4

Environment & Args

Stack

Heap
(Dynamic Memory)

Text
(program instructions)

High Address

Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows 
Down

• Dynamic memory is allocated at runtime.

• Dynamic memory has useful qualities:
• You decide the lifetime of the memory you allocate!

• Safe after you allocate and initialize it
• Expired after you free it

• Processes can request more space as they are running (hence "dynamic")
and the operating system will oblige (until it can't!)

• Allows for a process' memory use to grow to "fit" the dataset size.
• Also allows for programs running on machines with more memory to utilize it!

• Dynamic memory also has limitations:
• You are responsible for the lifetime of the memory you allocate!

• You must clean up your memory allocations in ways you're used to garbage collected 
languages doing for you automatically.

• Manual memory management requires careful consideration to avoid bugs
• Classes of bugs you haven't needed to ever worry about before!

Unexplored Territory

Static Memory



• is a standard dynamic memory allocator 
• http://bit.ly/malloc211

• You ask malloc for a raw block of dynamic memory
• The size you request is specified in bytes!
• To malloc larger data types you must compute bytes via: 

• This demo is simple because 1 char = 1 byte

• malloc returns a pointer to you
• In exceptional cases, the pointer will be NULL if it is unable 

to provide the sized block you asked for. This means your 
system is out of memory. 

• You must handle NULL pointers. Typically you'll print an error and 
exit immediately. If you don't, your program will crash sometime 
later when the null pointer is dereferenced.

• Normally the pointer will be the address of the first byte in 
the block of dynamic memory you requested.

• You must assume this memory is not yet initialized. 6

http://bit.ly/malloc211


• Dynamic memory management in C is manual:
• When you allocate dynamic memory, you must free it back up when you're done.
• Where's the cleanup in this example? There is none! We have a memory leak!

• How do you know you have a memory leak?
1. Look at your code: Do you have a malloc without a matching free? 

• If so, you have a memory leak!

2. Use valgrind: Valgrind is a tool that (among other things) can test for leaks.
• valgrind --leak-check=full ./a.out

• Fix the memory leak in this demo after printing str's contents in main.
• Is this specific memory leak really a big deal? Yes and no.
• Yes: Being lazy about freeing allocated dynamic memory is a slippery slope. If you're doing any 

manual memory management at all you should habitually free it.
• No: This specific silly program is not long running and it ends immediately after printing anyway, 

so the operating system would reclaim the memory no matter what. 7

Docs: The free() function shall 
cause the space pointed to 
by ptr to be deallocated; that 
is, made available for further 
allocation. Any use of a pointer 
that refers to freed space results 
in undefined behavior.



• Dynamic Memory Lifetime
• Safe after allocation and initialization.
• Expires after free.

• Lifetime is NOT scope!
• The pointer variable you freed is still in scope after free and still points to the 

same location in memory... but you must treat the pointer as expired!
• Why? Because future calls to malloc will try to reuse the space you just freed. To free 

dynamic memory means to be done with it.
• Good Practice: assign NULL to a pointer variable immediately after freeing it.

• Why? If you accidentally dereference it again after freeing, your program will segfault.

8



• When dynamically allocating array-like memory space, prefer calloc.
• Documentation: http://bit.ly/calloc211
• It inherently zeroes out all elements of the array.
• Its function signature is more fool proof:

• number of elements
• size of an individual element

• When dynamically allocating memory for structs, prefer malloc
• Structs allow you to cluster multiple values together in memory and access 

individual values by field names (next chapter is about structs)

10

http://bit.ly/calloc211


11



• Unlike automatic and static memory, dynamic memory 
gives us the ability to GROW our memory usage on-
demand.

• Suppose we have array-like data on the heap and want to 
store more values in the array. We could:

1. Allocate memory for old + new space needed.
2. Copy old values to new memory.
3. Free pointer to old memory.
4. Use pointer to new memory instead.

• The above steps are what the standard library's realloc
function does, if necessary.

12

MORE 
MEMORY!



14



15

Memory Segment Safe After Expires When Runtime Dangers
(Things that will (hopefully!) crash your program.)

Call Stack
• automatic variables 
• parameters

Initialization Function Call Returns

1. Returning or sharing address of 
automatic variable outside its 
scope.

2. Stack overflow (infinite recursion).

Static Memory
• static variables
• global variables

Always*
(Uninitialized variables 
are zeroed.)

Process Exits

1. Writing to read-only static memory.
2. Unintended conflicting writes from 

many places (grave concern in 
multithreaded programs).

Heap Memory
• "dynamic" memory

malloc and initialization
calloc

free'd
realloc'ed (argument)

1. Out of memory
2. Use before initialization
3. Writes overflowing allocated space
4. Failing to free (memory leak)
5. Use after free
6. Double free


