

• Branches enable safe exploration of ideas in a code base
• Workflow:

1. Checkout a new branch
2. Make commits
3. Was the branch a good idea?

• Yes: Merge it back into the mainline branch (git's idiomatic mainline branch is master)
• No: Discard the branch and go back to step #1

• In this lesson, we'll mechanisms for merging:
1. Fast-forward
2. Merge commits

• Merging branches with conflicting changes requires a resolution.
2

• Different teams will have different workflows for organizing repositories

• Rules will inform:
• When and why should you establish a branch?
• When are you allowed to merge a branch back in?
• Do you merge with fast-forwarding or not?
• How do you release a version of a project?
• How do you catch up a repository?

• Often in organizations these rules will be influenced by:
• Are you passing all tests?
• Have you done a code review?
• Will your branch merge cleanly?

• Today we'll explore the most important skill in these workflows: merging.
• For the full story on how large teams operate, read more here:
• https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

git

learncli$ git clone https://github.com/comp211/git-workflow.git

learncli$ cd git-workflow

List all branches (including branches only established on remotes)

learncli$ git branch --all

Notice many branches on the default remote named origin (the GitHub remote)

learncli$ git log --graph --oneline --all

• Simple C project
• main.c – Command-line interface number guessing

game
• Makefile – Build configuration file
• README.md – Simple readme file for the project
• .gitignore – git configuration file

• make and Makefile
• The program make reads the Makefile which tells it how

to build the project
• The default rule builds an executable named app using

the gcc compiler (make)
• The clean target deletes the built files (make clean)

• Try building the program and running it:
• make
• ./app

HEAD

master

• Commonly you'll use feature branches
• Working on a new feature? Establish a branch!

• To create a branch, in two steps:
git branch feature-challenge
git checkout feature-challenge

• These steps are usually combined:
git checkout -b feature-challenge

• Confirm branch checked out:
git branch

• Remember, a branch is just a pointer to a commit.
So a new branch doesn't diverge until commit(s)
are made.

feature-challenge

HEAD

master

1. Change main.c such that you are
guessing between 0 and 511, rebuild
with make, test.

2. Add your changes to main.c to staging

3. Make a commit with the message:
Increase the range from 0-511

feature-challenge

HEAD

master

1. In main.c, print a message on a new line
with some greeting like "Welcome to my
awesome game!" before "I'm thinking of
a number..."

2. Add changes and make another commit
with a message of your choice.

feature-challenge

HEAD

master

• To change to a different branch, check it
out:
git checkout master

• This changes the files in your working
directory to exactly match their contents
of the branch (commit) checked out.

• If there were uncommitted changes you
would risk losing in this process, git
requires you to deal with them first.

feature-challenge

HEAD

master

• As shown in the previous lecture, if we were to
merge feature-challenge and master, by default
we would have a single, unified history.
• It would appear as though there was never a branch!

• This type of merge is called a fast-forward merge
because all that really happens is the master
branch gets "fast-forwarded" to refer to the same,
later commit as feature-challenge.

• The downside to a fast-forward commit is you
lose the sense of which commits were made in
the feature branch.

master

HEAD

feature-challenge

• When merging feature branches many
consider it a best practice to establish a
"merge commit"
• In doing so, the feature branch's commits are kept

separate from the master branch's.
• This retains the history of the branch.

• To merge, checkout the branch you're merging
into, then:
git merge --no-ff feature-challenge

• The --no-ff flag is short for no fast-
forward.

feature-challenge

HEAD

master

• Notice a merge commit has two parents!

• Even though git has "branches" commit histories are
not usually trees, they're graphs.

• More specifically, git repositories are
• directed

• each commit points to parent(s)
• parents do not have references to children

• acyclic
• you cannot create a self-referential or cyclical

history
• there is a path from the current commit back to

the start of the project
• graphs

feature-challenge

HEAD

master

• View remote branches with: git branch --all
• Has someone pushed a new branch to a remote repo? You'll need to fetch them.
• The subcommand git fetch --all will fetch branches from all remotes.

• To work with a remote branch, there is a specific means for checking it out:
• If you see a branch such as remotes/origin/feature-count
• You can check it out with: git checkout --track origin/feature-count

• You will see a message indicating a new branch named feature-count is setup to
track the remote branch of the same name from remote origin.

• Now your repo will match the state of the remote repo's same branch.
• With write access, you can push and pull to this branch on the remote repository now, as well.

• Compare changes with master branch:
• git diff master

• Switch to master branch
• git checkout master

• Merge in feature-count branch with a merge commit (this would happen no matter what)
• git merge --no-ff feature-count

• Notice the merge succeeded even though feature-count was branched from an earlier state
of master
• Big idea: This is because commits track changes at the line level and the lines changed did not overlap or

conflict between feature-count and feature-challenge

• View commit graph history:
• git log --oneline --graph --all

• What happens when two
branches have modify
overlapping line segments of a
file and you attempt to merge
the branches?

• A conflict!

feature-challenge

master HEAD

• Let's checkout another feature branch
git checkout \

--track \

origin/feature-welcome

• Compare with master to see what's
changed:
git diff master

feature-challenge

master

HEAD

feature-welcome

• Let's switch back over to master and merge
git checkout master
git merge --no-ff feature-welcome

• Uh oh...
• Auto-merging main.c
• CONFLICT (content): Merge conflict in main.c
• Automatic merge failed; fix conflicts and then

commit the result.

• To see which files conflict, check status:
git status

feature-challenge

master

HEAD

feature-welcome

• Two options:
1. Abort Merge - git merge --abort
2. Fix Conflict and Make Commit

• Opening main.c, you'll see the conflicting lines:

• You decide what to keep or delete, make the changes, & save.
• It's your responsibility to remove the <<<<<<, =======, >>>>>> lines
• These give you context (HEAD area is your current checked out branch,

feature-welcome is the branch you're merging in)
• Pro-tip: use vim's regex search such as /===== followed by the n key for

next match to be sure you handle all conflicting areas. Often there are
multiple conflicting areas.

• Add conflicting file(s) to stage, make a commit, and you're merged!

master

feature-welcome

feature-challenge

master

feature-welcome

HEAD

• In an upcoming lecture we'll explore how to clean up some accidental
non-linearity in a repository's history before merging.

