/unc/comp211

Function Pointers I

© 2020 Kris Jordan All Rights Reserved



So... what is in memory all Environment & Args
Stack

the way down there? - Frame

Function Call - Frame 1

e Let's find out...

Function Call - Frame N

* Add the line:

printf("func main: %p\n", main);

 Your program's compiled machine code is stored
in read-only memory beneath static memory! Heap

(Dynamic Memory)

Static Memory

Unexplored Territory

Low Address —__



A Function's "Value” in a System's Language

At runtime, evaluates to the of the start of
the function's machine code instructions.
» The process's machine code is in memory just beneath its static memory.
« The CPU carries out the instructions stored in this segment of memory.
* Your C code, when compiled and executed as a process, lives in this segment!

« When a function call is encountered, the compiler emits machine
instructions for setting up the new call frame and then the CPU will JUMP to

the address of the function's instructions.

* [f a function name is just a memory address, can we store that address in a
pointer and then make function calls using the pointer's name?



A Function's Type

What is a function's type?

A function's type is defined by its and its return type.

Forward declarations of functions exhibit this:

void hello();
void world();
int add ;
int sub ;

Which of the functions above is the same type as another? Different?

The two void functions with no parameters are the same type (hello, world)

The two int functions with two int parameters are the same type (add, sub)

Anywhere you use a function of one type you could substitute the name of another of the same type.



Function Pointer Variable Types

» To declare a function pointer variable:
1. Declare it like you would a forward declaration without parameter names
2. Add asterisk before the pointer variable's name
3. Surround the asterisk and the pointer variable's name in parenthesis

« Examples based on the types of functions of the previous slide:

void (*a_void_fn)();
int64_t (*an_int64_b1inop) (int64_t, int64_t);

» Now you have two variables, a_void_fn and an_int_fn. These two variables can be assigned the
addresses of the actual functions declared on the previous slide:

a_void_fn = hellos

a_void_fn()3

an_int64_binop = add;

printf("%d\n", an_int64_binop(2, 3))3 // Prints 5



What are the use cases of function pointers?

« Many! Dynamic dispatch is an important mechanism under the hood
of beloved features in many other programming languages.

» We can write and call functions that take functions as arguments!
* e.g. higher-order functions such as filter, map, reduce
 Sorting in Java, gsort in stdlib.h

» We can create "interfaces” for "object-oriented” style programming.

 And morel!



