


• Let's find out...

• Add the line:

• Your program's compiled machine code is stored 
in read-only memory beneath static memory!

22

Environment & Args

Stack

Heap
(Dynamic Memory)

Machine Code
(Called the "Text" Segment")Low Address

main - Frame 0

Function Call - Frame 1

Function Call - Frame N

...

Grows 
Down

Unexplored Territory

Static Memory



• At runtime, a function name evaluates to the memory address of the start of 
the function's machine code instructions.
• The process's machine code is in memory just beneath its static memory.
• The CPU carries out the instructions stored in this segment of memory.
• Your C code, when compiled and executed as a process, lives in this segment!

• When a function call is encountered, the compiler emits machine 
instructions for setting up the new call frame and then the CPU will JUMP to 
the address of the function's instructions.

• If a function name is just a memory address, can we store that address in a 
pointer and then make function calls using the pointer's name? Yes!!!

3



• What is a function's type?

• A function's type is defined by its parameter types and its return type.

• Forward declarations of functions exhibit this:

• Which of the functions above is the same type as another? Different?

• The two void functions with no parameters are the same type (hello, world)

• The two int functions with two int parameters are the same type (add, sub)

• Anywhere you use a function of one type you could substitute the name of another of the same type.
4



• To declare a function pointer variable: 
1. Declare it like you would a forward declaration without parameter names
2. Add asterisk before the pointer variable's name
3. Surround the asterisk and the pointer variable's name in parenthesis

• Examples based on the types of functions of the previous slide:

• Now you have two variables, a_void_fn and an_int_fn. These two variables can be assigned the 
addresses of the actual functions declared on the previous slide:

5



• Many! Dynamic dispatch is an important mechanism under the hood 
of beloved features in many other programming languages.

• We can write and call functions that take functions as arguments!
• e.g. higher-order functions such as filter, map, reduce
• Sorting in Java, qsort in stdlib.h

• We can create "interfaces" for "object-oriented" style programming.

• And more!

6


