


• A structure in C is a group of related variables
• Each variable in the struct is a member (also often called a property)
• You can think of it as like a class with only public properties and no method or constructor (C++/Java-style 

classes evolved out of C-style structs)

• You declare a structure as such:

• Example:

2



• The declaration of a struct variable works almost as expected:

• Example:

;

• In a few slides you will learn how to make the struct keyword implicit.

• The same rules about locations of variables in memory apply to structs
• This is a significant difference from memory-managed languages like Java! In those 

languages, your objects can only live in dynamic, heap memory. You can only pass around 
pointers.

3



• Zero-initialize all members:

;

• The book does not mention this because it came in the C99 standard:
"If there are fewer initializers in a brace-enclosed list than there are members of an aggregate, the remainder are initialized implicitly the 
same as objects with static duration."

• Initialize members, in order, to specific values:

;

• The order of the values corresponds with the order of the member definitions in the struct (!)

• This only works when declaring and initializing at the same time.
• You cannot initialize after declaration or reassign with this syntax.

• As a matter of practice, always initialize one way or the other!
• A struct's members will be garbage values, otherwise.

4



• C's keyword defines another name for another type

• The syntax is:

• For example:

• After defining a type, you can use it in place of the original:
whole_number x = 0;
whole_number y = 211; 5



• When declaring struct arrays and variables, most C programmers find it verbose to have to write 
the struct keyword at every declaration.

• The keyword provides a way out!

• The syntax is the same as before:

• Examples:

• After defining two aliases of struct Point, you could use either with the same effect:
point_t x = { 0 };
Point y = { 1.0, 2.0 };

• Naming conventions around struct typedefs vary project-to-project.
• Two common conventions illustrated above: suffix with _t or CamelCase
• In this course, we will opt for a convention of CamelCase struct names

6



• Consider again the syntax for a typedef:

• And the pattern of first defining a struct type and then referencing it later:

• These two steps are commonly combined into one:

• Can you get rid of the redundancy of Point being repeated twice?
• Yes, but only if you do not need a recursive data type (linked list, tree, etc). In this case you could leave off the first Point to 

specify an anonymous struct.
• Rather than remembering that caveat, we will always be redundant on this front in 211. We'll use recursive data types soon.

7



• Diagram the main frame's local variables

• Respond with the printed output.

8



• Access Members

• Assign to Members

• Take the Address Of

• Copy over all members of a struct

9

Be certain you understand the 
big difference 

between 
a copy of a struct 

and 
a pointer to a struct

!!!!



10



• Consider the following variables:
•
•

• C provides a convenient arrow syntax for dereferencing a struct pointer and 
accessing a member:
•
• is syntactic sugar for: 

• Also works for lvalues (left-hand side) in assignment statements:
•
• vs. 

• When working with pointers to structs, the arrow syntax is strongly preferred.

11


