/unc/comp211
Systems Fun

C "Modules"l

© 2020 Kris Jordan All Rights Reserved

Modularizing Programs

Downsides to single file programs:

1. Single namespace for static global identifiers (such as variable/function names)

« Static global identifiers have file-level namespaces (hidden from other files)

2. Recompiling large projects can be slow, even though changes are small.

 Incremental compilation on a per-file basis should help avoid this downside

3. Sharing code between multiple programs requires duplication of code.

 Duplication of code is generally best avoided!

4. Long files are more difficult to reason through separate of concerns.

11

Other files that depend
" " e on the module.
Modules" in C

» There are not formal modules in the C language,
but the combination of a header and source file
offer benefits of a module

. . . Header File (.h)
 Header file (.h) contains function and type Declarations

declarations
« Source file (.c) contains concrete implementations

Source File

» Header file provides the interface to a module. ©

 The contents of a well-defined module should treat the
source file as a black box.

Defining a Header File (1/2)

 Header filenames end in .h

Point.h Open Include Guard
#ifndef POINT_H
« The filename conventionally matches its faetine FOINTH
corresponding .c file berordle it ot b
 Ex: Point.h / Point.c foube '

} Point;

» Header files are surrounded in macro
"include guards" (shown right, discussed
on next slide)

Point Point_value(double x, double y);

 Declarations of functions, structs, and

shared global variables are made inside
the include guard. double Point_distance(const Point xself, const Point xother);

« Documentation for end users of a module

|S er-t-ten |n -the header fIIeS Woid Point_print(const Point xself);
 This should be the only file a programmer #endif
needs to look at in order to make use of a

module!

Close Include Guard

Defining a Header File (2/2) - Include Guards

When the C preprocessor reaches an #include macro, it literally

replaces the include line with the contents of the file. .
Point.h
If many C files include the same header file, the declarations of the #ifndef POINT_H

. #define POINT_H
header files would be repeated which is invalid C

typedef struct Point {
To address this, include guards are a pattern of macro if-then double x;

. . double y;
statements as shown right: S Rl

#ifndef (if not defined) checks to see if a macro symbol has
been defined

Point Point_value(double x, double y);

#define defines a macro symbol
#endif ends the conditional

Convention: name the macro Symbol the same as the file name double Point_distance(const Point *self, const Point *other)
with underscores replacing non-alphanumerics: ALL_CAPS_H

Effect: The first time a file includes a header file, its declarations
are loaded. Subsequent times it is skipped over. This makes
including a header file idempotent. frendif

Moid Point_print(const Point xself);

Including a Header File

So far, you've included system library header files:
« #include <stdint.h>
 #include <stdlib.h>
 #include <stdio.h>

The <header.h> syntax tells the compiler to look in system
include paths

« Some cryptic gcc flags (shown left) will show you the defaults on a

system. You can also override these per project with other gcc flags.

To include a header file from a module in your project, you
surround it with "s instead:

« #include "Guards.h"
« #include "Rational.h"

The "s tell the compiler to look in local project director(y/ies)
and can also be customized (later).

learncli$ echo "" | gcc -E -Wp,-v -
#tinclude "..." search starts here:
#include <...> search starts here:
/usr/lib/gcc/x86_64-1inux-gnu/7/include

/usr/local/include
/usr/include/x86 64-1linux-gnu
/usr/include

End of search list.

Compiling a "Module" into an Object Code file (1/2)

C compilers have facilities to build single modules at a time

A compiled C module is called an Object Code file (.0 extension)

An Object Code file contains machine code and a symbol table

Symbols are global identifiers like function names and variables
« Symbols defined in the module are mapped to their locations in the obj file
 External symbols (imported into the module) are undefined

Object files are not executable on their own. They must be linked with the other object files they
depend on in order to be executable programs.

Incremental Compilation with Object Code files (2/2)

Adding the -c¢ flag to the compiler flags produces object code files

Ex: gcc -Wextra -Wall -std=cll -g Point.c
» This produces the object code file Point.o

To link object code files together into an executable file, exactly one of the object code files
must have a main function symbol defined.

Ex: gcc Point.o main.o
 This produces a.out (though, with the -o option you could change the filename)

Notice that changing one file means recompiling only its module and relinking. Next lecture we'll
look at how to use the make build tool to automate these steps away.

Aside: Inspecting the Object Files

learncli$ objdump -t Point.o

» The objdump utility "displays | |
information from object filés Pont.o: file format elfe4-xse 64

o i SYMBOL TABLE:
man o bJ dum P 0000000000000000 1 df *ABS* 0000000000000000 Point.c
0000000000000000 1 .text 000000OOEEOOO000 .text
0000000000000000 1 .data 0000000000000000 .data
° The _-t ﬂ ag Outputs -the Sym bOl 0000000000000000 1 .bss 0000EEOEEEOOE0OO .bss
: 0000000000000000 1 .rodata 0000000000000000 .rodata
'ta b I e (S h oOwWn i g ht) 0000000000000000 1 .note.GNU-stack 0000000000000000 .note.GNU-stack
)) 7)) 0000000000000000 1 .eh_frame 0000000000000000 .ch_frame
° N ofice PO | nt_d Istance IS d efl Nn ed 0000000000000000 1 .comment 0000000000000 .comment
. 0000000000000000 g .text 0000000000000042 Point_value
* pow, sq rt, an d Prl ntf sym bol S are 0000000000000042 g .text ©000AOEOEE0A085 Point_distance
undefined (n eed to be filled in 0000000000000000 +UND* 0000000000000000 _GLOBAL_OFFSET_TABLE_
: ; : ; 0000000000000000 xUND* 0000000000000000 pow
when linked with SyStem librari eS) 0000000000000000 *UND* ©000000000000000 sqrt

00000000000000CT g .text 000000000000003d Point_print
0000000000000000 *UND* 0000000000000000 printf

* objdump -d shows
disassembled assembly code

e Converts machine code back to
assembly code

