

Downsides to single file programs:

1. Single namespace for static global identifiers (such as variable/function names)

• Static global identifiers have file-level namespaces (hidden from other files)

2. Recompiling large projects can be slow, even though changes are small.
• Incremental compilation on a per-file basis should help avoid this downside

3. Sharing code between multiple programs requires duplication of code.
• Duplication of code is generally best avoided!

4. Long files are more difficult to reason through separate of concerns.

2

• There are not formal modules in the C language,
but the combination of a header and source file
offer benefits of a module

• Header file (.h) contains function and type
declarations

• Source file (.c) contains concrete implementations

• Header file provides the interface to a module.
• The contents of a well-defined module should treat the

source file as a black box.
3

Header File (.h)
Declarations

Source File
(.c)

Other files that depend
on the module.

• Header filenames end in .h

• The filename conventionally matches its
corresponding .c file
• Ex: Point.h / Point.c

• Header files are surrounded in macro
"include guards" (shown right, discussed
on next slide)

• Declarations of functions, structs, and
shared global variables are made inside
the include guard.

• Documentation for end users of a module
is written in the header files.
• This should be the only file a programmer

needs to look at in order to make use of a
module! 4Close Include Guard

Point.h Open Include Guard

• When the C preprocessor reaches an #include macro, it literally
replaces the include line with the contents of the file.

• If many C files include the same header file, the declarations of the
header files would be repeated which is invalid C

• To address this, include guards are a pattern of macro if-then
statements as shown right:

1. #ifndef (if not defined) checks to see if a macro symbol has
been defined

2. #define defines a macro symbol

3. #endif ends the conditional

• Convention: name the macro symbol the same as the file name
with underscores replacing non-alphanumerics: ALL_CAPS_H

• Effect: The first time a file includes a header file, its declarations
are loaded. Subsequent times it is skipped over. This makes
including a header file idempotent.

5

Point.h
1

3

2

• So far, you've included system library header files:
• #include <stdint.h>
• #include <stdlib.h>
• #include <stdio.h>

• The <header.h> syntax tells the compiler to look in system
include paths
• Some cryptic gcc flags (shown left) will show you the defaults on a

system. You can also override these per project with other gcc flags.

• To include a header file from a module in your project, you
surround it with "s instead:
• #include "Guards.h"
• #include "Rational.h"

• The "s tell the compiler to look in local project director(y/ies)
and can also be customized (later). 6

learncli$ echo "" | gcc -E -Wp,-v -
#include "..." search starts here:
#include <...> search starts here:
/usr/lib/gcc/x86_64-linux-gnu/7/include
/usr/local/include
/usr/include/x86_64-linux-gnu
/usr/include
End of search list.

• C compilers have facilities to build single modules at a time

• A compiled C module is called an Object Code file (.o extension)

• An Object Code file contains machine code and a symbol table

• Symbols are global identifiers like function names and variables
• Symbols defined in the module are mapped to their locations in the obj file
• External symbols (imported into the module) are undefined

• Object files are not executable on their own. They must be linked with the other object files they
depend on in order to be executable programs.

7

• Adding the -c flag to the compiler flags produces object code files

• Ex:
• This produces the object code file Point.o

• To link object code files together into an executable file, exactly one of the object code files
must have a main function symbol defined.

• Ex: gcc Point.o main.o
• This produces a.out (though, with the -o option you could change the filename)

• Notice that changing one file means recompiling only its module and relinking. Next lecture we'll
look at how to use the make build tool to automate these steps away.

8

• The objdump utility "displays
information from object files"
• man objdump

• The -t flag outputs the symbol
table (shown right)
• Notice Point_distance is defined
• pow, sqrt, and printf symbols are

undefined (need to be filled in
when linked with system libraries)

• objdump -d shows
disassembled assembly code
• Converts machine code back to

assembly code

9

