/unc/comp211

Design Principles of C Functions
with Pointer Parameters I

© 2020 Kris Jordan All Rights Reserved



Best Practice: const struct Pointer Params

void Point_print(const Point xself)

{
self->x = self->y;
printf (" (%f, %f)\n", (xself).x, (xself).y);

point.c: In function ‘Point_print’:
point.c:20:13: assignment of member ‘x’ in read-only object
self->x self->y; // YIKES

 Declaring a pointer value const signals you do not intend to mutate it

« If your implementation of the function breaks this contract the compiler will typically catch it (if
you try hard enough in C, you can get around the const)

* Rule of thumb: always declare pointer parameters as const
« [f it turns out you need to mutate it, then you should think very critically about the design of your function



Consider the following function signatures...

Point add_optA(const Point *a, const Point *b);
void add_optB(const Point *a, Point *b);

void add_optC(Point *a, const Point *b);

void add_optD(const Point *a, const Point *b, Point *out);

« Each of these could describe a function that adds two Point structs together.

« What can you infer about how each function works by just reading its signature?



Structs as Parameters

« Just like primitive data types, functions can have struct parameters

A struct argument’'s members are copied to parameter member's
* In other words, structs are pass-by-value

« Complete copies are made into the function call frame just like primitives
« This is not possible with objects in memory managed languages like Java/JavaScript/etc!

 Using struct pointers as parameters is often preferred to structs
 Usually more efficient to copy a pointer than every member of a large struct

« However, must be careful and intentional in the use of the pointers.
* Rule of thumb: declare all struct pointer parameters as const unless you intend to mutate it



Be intentional when you want mutable params.

 TwWo common patterns:

‘I. OOP_InSpIred flrst parameter pOIntS .to \Eoid Point_translate(Point *self, double x, double y)
the subject being mutated cefliiesn 4o 5

* Note: self is not a keyword in C, the , ety
parameter could have been named
anything (i.e. this or p)

2. Have an explicit "out” parameter

* This si?nals to the caller an intent to write
a result to the address passed to the
parameter.

void Point_translate_to(const Point *self, double x, double y, Point *out)

{

out->x
out->y

self->x + x;
self->y + vy;




Ownership: Who is responsible for freeing?

» Each time Path list was extended, more heap memory was allocated
* |s freeing just the head Path enough?
 Let's use valgrind to find out.

 The documentation of extend notes:

Extend a Path by creating a new Path Node at 1its tail.
Returns a pointer to the next Path for future extensions.
The returned Pointer 1is considered owned by the head Path
in the list and MUST NOT be freed manually.

* The current implementation of Path_free introduces a memory leak.
The function should free all subsequent Path values pointed to by
next before freeing itself. Let's implement that recursively.



Data Structures and Ownership

* In an unmanged heap memory environment (like C, C++, Obj-C, Rust) you must
think deeply about the ownership of values on the heap

« The owner of allocated heap memory is responsible for freeing it.

 For every allocation, you should be able to discern its owner
« The ownership in a linked list is recursive.
« The head variable in main owned a Path, that owned a Path, and so on.
 Freeing the head variable (using Path_free!) freed all its owned Paths

* You would not consider tail to have ownership, just a reference
 You should only free the owner and only once!
* Freeing a reference will lead to double free.
* You also want to be careful never to use a reference beyond the lifetime of its referent.



