


• Declaring a pointer value const signals you do not intend to mutate it

• If your implementation of the function breaks this contract the compiler will typically catch it (if 
you try hard enough in C, you can get around the const)

• Rule of thumb: always declare pointer parameters as const 
• If it turns out you need to mutate it, then you should think very critically about the design of your function

2



• Each of these could describe a function that adds two Point structs together.

• What can you infer about how each function works by just reading its signature?

3



• Just like primitive data types, functions can have struct parameters

• A struct argument's members are copied to parameter member's
• In other words, are pass-by-value
• Complete copies are made into the function call frame just like primitives

• This is not possible with objects in memory managed languages like Java/JavaScript/etc!

• Using struct pointers as parameters is often preferred to structs
• Usually more efficient to copy a pointer than every member of a large struct
• However, must be careful and intentional in the use of the pointers.

• Rule of thumb: declare all struct pointer parameters as const unless you intend to mutate it

4



• Two common patterns:

1. OOP-inspired first parameter points to 
the subject being mutated
• Note: is not a keyword in C, the 

parameter could have been named 
anything (i.e. this or p)

2. Have an explicit "out" parameter
• This signals to the caller an intent to write 

a result to the address passed to the 
parameter.

5



• Each time Path list was extended, more heap memory was allocated
• Is freeing just the head Path enough?
• Let's use valgrind to find out.

• The documentation of extend notes:

• The current implementation of Path_free introduces a memory leak. 
The function should free all subsequent Path values pointed to by 
next before freeing itself. Let's implement that recursively.

7



• In an unmanged heap memory environment (like C, C++, Obj-C, Rust) you must 
think deeply about the ownership of values on the heap

• The owner of allocated heap memory is responsible for freeing it.

• For every allocation, you should be able to discern its owner
• The ownership in a linked list is recursive.
• The head variable in main owned a Path, that owned a Path, and so on.
• Freeing the head variable (using Path_free!) freed all its owned Paths

• You would not consider tail to have ownership, just a reference
• You should only free the owner and only once! 
• Freeing a reference will lead to double free.
• You also want to be careful never to use a reference beyond the lifetime of its referent.

8


