


• In software engineering, complexity is often the result of excessive 
interdependency and exposure to underlying implementation details.

• Fred Brooks' Mythical Man Month identifies two kinds of complexity:

1. Essential Complexity - inherent in the problem you are solving

2. Accidental Complexity - complexity caused by underlying systems

• As software engineers and designers, good, simple abstractions help 
you minimize accidental complexity and hide implementation details.

2



• "Separates the use of an abstraction from the implementation of it"
• Structure and Interpretation of Computer Programs by Abelson and Sussman

• This is a design concept you'll see echoed in many forms:
• Information Hiding
• Encapsulation
• Least Privilege
• Design by Contract

• Good abstraction barriers raise essential complexity to an interface
and hide away accidental complexity beneath it

3



4

• Algorithms and data structures of an abstraction.
• The implementation owner can make changes and improvements if the 

operations exposed at the abstraction barrier maintain their "contracts".

• Expressed and implemented in terms of the operations the abstraction provides
• Implementation details beneath the barrier should be irrelevant

• If a user of the abstraction must "reach across" the barrier to concern itself with details 
beyond what the operations provide, this is called a "leaky abstraction" and a design problem.



• Generally language specific, but a consistent theme:
• The abstraction is defined in terms of its operations and axioms.
• In programming languages, operations are functions/methods.

• C: Function Declarations in Header Files
• Java: Interfaces (Public Methods)
• Rust: Traits

• Design Goal: Minimize # operations while maximizing # of use cases
• These two goals are often at odds with one another. Trade-offs galore!
• Getting this right in novel abstractions requires iteration and experimentation.

5



• When a barrier of abstraction is 
robust, it becomes a building block
• Higher level barriers of abstraction 

are built in terms of lower levels!

• Layered architectures in software 
engineering enable complex 
systems to be built with higher
confidence and productivity
• Lower layers are tested in isolation 

from higher layers and provide a 
sturdier foundation than trying to 
build a complex system ad-hoc.

6


