lexical analysis

© 2020 Kris Jordan All Rights Reserved

Language Processor Front-end Overview

Input

An input string is provided with access to its individual characters

Lexical Analysis

 a.k.a. Scanning/TokenizationA tokenizer identifies lexemes in the input string and yields tokens while filtering out spaces and comments.

Syntax Analysis a.k.a. Parsing

A parser constructs a parse tree data structure out of the tokens produced during lexical analysis.

Why separate lexical analysis from syntax analysis? Generally, both stages can be implemented simpler and more elegantly if their concerns are separated.

Num(1)	Op(+)	Num(2)	Op(*)	Num(10)

Lexical Analysis

- Today's focus is lexical analysis:

1. What are the key concepts and terms to understand?
2. How can you specify the textual patterns/rules of lexemes?
3. Given a specification, how do you approach tokenization?

Key Terms

- Lexeme - one or more characters in a string with a single unit of meaning
- There are two number lexemes in the string "40 20"
- Think of these as the words of our language
- Pattern - specification of the form or rules of a lexeme
- Regular expressions like (1|2|4)(0)* can specify the patterns lexemes must match. You'll learn the details of these patterns this week.
- Token - a value in a program that has the token's type and often some associated data. Examples:
- Number(40.0)
- Number(20.0)
- Op('+')
- LeftParen, RightParen

Regular Expressions ("regex")

- A regular expression is a notation for specifying textual patterns
- In language frontends they are used to specify lexeme patterns
- Have everyday utility in searching for text in files and verifying user inputs
- Regular Expressions describe a Regular Grammar
- In COMP455 you will explore the theoretical basis of regular grammars
- Our goal is pragmatic: what are their rules and how can we apply them?
- A Regular Grammar is more constrained than the next kind of grammar we will find applications in (Context-Free Grammar)
- The Chomsky Hierarchy (1956) identifies the broad classes of grammars according to their expressive power.

Regular Expressions... pragmatically Operation: Concatenation

- The simplest regular expression "operator" is concatenation
- Any two regular expressions, r_{1} and r_{2}, can be concatenated to $r_{1} r_{2}$
- In practical notations, as we'll use and shown above, concatenation is implicit.
- In formal notations you may see the concatenation operator explicitly represented with an underscore or dot, for example $\boldsymbol{r}_{\mathbf{1}} \cdot \boldsymbol{r}_{\mathbf{2}}$
- Suppose $\boldsymbol{r}_{\boldsymbol{1}}$ is "c" and \boldsymbol{r}_{2} is "o", we can concatenate these two regular expressions to form regular expression r^{\prime} as "co"
- Further, if r_{3} is "m" and \mathbf{r}_{4} is " p ", you could concatenate $\boldsymbol{r}^{\prime} r_{3} \boldsymbol{r}_{4}$ to form r_{e} "comp"
- The way to read concatenation is "and then"
- r_{e} can be read as " c " and then " o " and then " m " and then " p "
- This operator should feel natural and obvious.
- When you search a web page with $\mathrm{Ctrl}+\mathrm{F}$ it is the only operator you have available.

Regular Expressions... pragmatically Operation: Alternation via

- Union is the more formal name for alternation because you are forming a grammar that is the union of two simpler grammars.
- Any two regular expressions, r_{1} and r_{2}, can be alternated with $r_{1} \mid r_{2}$
- The vertical bar symbol is effectively universal
- Suppose $\boldsymbol{r}_{\boldsymbol{1}}$ is "c" and \boldsymbol{r}_{2} is "о", we can alternate these two regular expressions to form regular expression r^{\prime} as "c|o"
- Further, if $\boldsymbol{r}_{\mathbf{c}}$ is $|\mathrm{m}| \mathrm{p}$ " m^{2} and \mathbf{r}_{4} is "p", you could form the alternation $\boldsymbol{r}^{\prime}\left|\boldsymbol{r}_{3}\right| \boldsymbol{r}_{4}$ to form $\boldsymbol{r}_{\boldsymbol{e}}$
- The way to read alternation is "or"
- r_{e} can be read as "c" or "o" or "m" or "p"

Regular Expressions... pragmatically
Operation: Zero or More Repetitions via *

- Closure is the more formal name for zero or more repetitions.
- Any regular expression r can be repeated zero or more times with r^{*}
- The asterisk symbol, called the Kleene Star after its inventor, is universal.
- Suppose \boldsymbol{r} is "c", we can repeat r zero or more times with "c*"
- The way to read the star is "is repeated zero or more times"
- rcan be read as "c" is repeated zero or more times
- This operator is strange in isolation but powerful in composition...

Regular Expressions Compose by Combining Operators (1/2)

- You now know two operators, how can you compose them?
- Just like in arithmetic expressions you can group terms with parenthesis to make the order of operations explicit. Compare the following two regular expressions:
(comp)|(sci)
("c" and then " 0 " and then " m " and then " p ") $O R$ (" s " and then " c " and then " i ") matches either "comp" or "sci"
(com)(p|s)(ci)
("c" and then " 0 " and then "m") and then ("p" OR "s") and then (" c " and then " i ") matches "com" and then " p " or " s " and then "ci", so either "compci" or "comsci"

Composing Regular Expressions (2/2)

- When would it ever be valuable to specify zero or more repetitions?
- Suppose you specify a regular expression to match any single digit:

$$
\mathbf{r}_{\text {digit }}=\text { '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' }
$$

- Now, you could try specify a whole number as combinations of digits using only concatenation and alternation:

$$
\mathbf{r}_{\text {whole }}=\mathbf{r}_{\text {digit }}\left|\left(\mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }}\right)\right|\left(\mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }}\right) \mid\left(\mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }}\right)
$$

- But that only describes whole numbers made of 1 to 4 digits! This is where the Kleene star comes to the rescue:

$$
\mathbf{r}_{\text {whole }}=\mathbf{r}_{\text {digit }} \mathbf{r}_{\text {digit }}^{*}
$$

- A whole number is "a digit or (a digit and then zero or more repetitions of a digit)"
- Breaking the rules of a regular expressions into regular definitions helps their legibility. Compare with:

The Fundamental Operators of Regular Expressions

The three regular expression operators you need to know are:

1. Any two regular expressions, r_{1} and r_{2}, can be concatenated as $r_{1} r_{2}$ "r1 AND THEN r2"
2. Any two regular expressions, r_{1} and r_{2}, can be alternated as $\boldsymbol{r}_{\boldsymbol{1}} \mid \boldsymbol{r}_{\boldsymbol{2}}$ "r1 OR r2"
3. Any regular expression r can be repeated zero or more times with \mathbf{r}^{*} " r is repeated zero or more times"

Composition is the Very Big Deal: When you apply any of these operators you are composing another regular expression that can further be composed with other regular expressions.

You will learn additional regular expression operators that help you write patterns more succinctly. They are not fundamental. All other regex operators are defined in terms of the three operators above.

Regular Definitions

- A regular definition is a conventional notation to break down regular expressions into named subexpressions
- Just like we did when forming a regular expression for whole numbers!
$d_{1}->r_{1}$
$d_{2}->r_{2}$
-••
$d_{n}->r_{n}$
- Regular definitions are non-recursive. This means each $\boldsymbol{r}_{\boldsymbol{n}}$ is limited to:

1. Terminal Characters, or
2. Any previously defined non-terminal definitions (formally, $\left\{d_{1} \ldots d_{n-1}\right\}$)

- The next class of grammar we study (context-free) does not have restriction \#2.

Regular Expressions - Additional Operators

- The three operators discussed last lecture are fundamental:
- Concatenation
- Alternation (Union)
- Zero or More Repetitions (Closure / Kleene Star)
- There are very common real world patterns you will want to specify that are tedious using only those three operators.
- Most regex implementations offer additional operators for improved ergonomics. The ones we'll see today are built into egrep, Java, JavaScript, Python, etc.

Regex Character Classes - Character Lists (1/3)

- What regular expression matches single characters 'a' through 'f'?

$$
\mathbf{r} \rightarrow \mathbf{a}|\mathrm{b}| \mathrm{c}|\mathrm{~d}| \mathrm{e} \mid \mathrm{f}
$$

- Character classes allow you to express the above pattern as:
r -> [abcdef]
- When you need to match a specific set of individual characters, this is commonly helpful. For example, punctuations:
r -> [,.:;]

Regex Character Classes - Character Ranges (2/3)

- What regular expression matches single characters 'a' through 'z'?
$r->a$
b

f \square Z
- Character classes allow you to express the above pattern as:

$$
r->[a-z]
$$

- How does a regex library know the range? It's based on ASCII ordinal numbers for each char. ASCII code for a is 97 and z is 122, so it accepts chars whose ASCII ordinals are between those two numbers.
- You can combine multiple ranges in singular regular expressions. For example, valid hexadecimal digits which are case insensitive:

$$
r->[a-f A-F 0-9]
$$

Regex Character Classes - Escaping (3/3)

- You can directly capture *'s, ()'s, and |'s in character classes
r -> [*()|]
- Why? The square brackets signify "treat these characters as character literals."
- You usually need to escape the characters [] and - to use them inside a character class.
- How regex implementations handle escaping inside of character classes varies.
- No point in memorizing, just search references when needed.

Regex Repetitions - N to M repetitions

- Often you will want a pattern matched between a ranged number of times

$$
d_{2-4}->r r|r r r| r \mid r r
$$

- The $\{\mathbf{N}, \mathbf{M}\}$ operator provides \boldsymbol{N} to \mathbf{M} repetitions semantics

$$
d_{2}->r\{2,4\}
$$

- For at most \mathbf{M} repetitions, 0 inclusive, you can leave off the \mathbf{N} :

$$
d_{<=M}->r\{, M\}
$$

- For at least \mathbf{N} repetitions, you can leave off the \mathbf{M}

$$
d_{>=N}->r\{N,\}
$$

Regex Repetitions - Exactly N repetitions

- Often you will want a pattern matched a specific number of times

$$
d_{5} \rightarrow r r r r r
$$

- You could achieve this with N to M repetitions, but it's redundant: $d_{5}->r\{5,5\}$
- The $\{\mathbf{N}\}$ operator provides \mathbf{N} repetitions semantics

$$
d_{5}->r\{5\}
$$

Regex Repetitions - One or More Repetitions

- Often you will want at least one of some pattern

$$
\mathbf{d} \rightarrow \mathbf{r} \mathrm{r}^{*}
$$

- Using the N to M Repetitions operator, you could as: d -> $r\{1$,
- This is so commonly useful, there's a special + operator for it: d-> $\mathbf{r}+$

Regex Repetitions - Zero or One - "Optional"

- Often you will want at most one of some pattern

$$
d \rightarrow r \mid \varepsilon
$$

- The empty string is $\boldsymbol{\varepsilon}$ and it matches against nothing.
- Using the N to M Repetitions operator, you could as:
d $\rightarrow r\{0,1\}$
- This is so commonly useful, there's a special ? operator for it: $d->r$?

Regular Expression Operator Precedence

Highest

1. Repetitions (left binding, unary operators)
-*

- +

-?

- $\{\mathrm{N}, \mathrm{M}\}$'s

2. Concatenation
3. Alternations

Lowest

Case Study: The loldigit language

- digit
-> [0-9]
- out_louds
-> [ol]
- lol
-> 'l' 'o' 'l' out_louds*
- tokens
-> lol | digit

A Tokenizer Finds Lexemes and Yields Tokens

- It does so by iterating through the characters of an input string one-by-one
- To simplify the implementation of a tokenizer it is often helpful to be able to "peek" ahead of the current character by one additional character without actually taking it. Why is this helpful?
- When you start looking for the next lexeme you can peek ahead one character to know what type of lexeme it should be and jump to a subroutine to take it.
- Variable names in most programming languages can't start with a number. This is so the language's tokenizer can peek at the first character of what's next and decide if it's going to be a number or not.
- If you did not know you reached the end of a lexeme until you took the next character after the lexeme you'd need to do gymnastics to "give it back" or use additional state to keep track of what it was.

Follow-along

- Let's explore the code in lecture/ls35-lexical
- The demo app we're working on is tokens.c
- The purpose of this app is to tokenize an input string using a simple architecture.
- It demos the practices of peeking ahead at characters and taking them
- It also demos matching characters using alternation

